- YOLO11-obb使用C++及trt进行推理(详细版)
范男
c++目标检测计算机视觉YOLO图像处理
针对YOLO的使用.engine权重及C++代码进行推理使用TensorRT-YOLO项目网站是:https://github.com/laugh12321/TensorRT-YOLO可以直接选择git或者下载下来gitclonehttps://github.com/laugh12321/TensorRT-YOLOcdTensorRT-YOLO1.编译主程序教程网址是:https://github
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 英伟达Triton 推理服务详解
leo0308
基础知识机器人Triton人工智能
1.TritonInferenceServer简介TritonInferenceServer(简称Triton,原名NVIDIATensorRTInferenceServer)是英伟达推出的一个开源、高性能的推理服务器,专为AI模型的部署和推理服务而设计。它支持多种深度学习框架和硬件平台,能够帮助开发者和企业高效地将AI模型部署到生产环境中。Triton主要用于模型推理服务化,即将训练好的模型通过
- 模型实战(21)之 C++ - tensorRT部署yolov8-det 目标检测
明月醉窗台
#深度学习实战例程人工智能c++YOLO目标检测计算机视觉人工智能
C++-tensorRT部署yolov8-det目标检测python环境下如何直接调用推理模型转换并导出:pt->onnx->.engineC++tensorrt部署检测模型不写废话了,直接上具体实现过程+all代码1.Python环境下推理直接命令行推理,巨简单yolodetectpredictmodel=yolov8n.ptsource='https
- 【深度学习】大模型GLM-4-9B Chat ,微调与部署(3) TensorRT-LLM、TensorRT量化加速、Triton部署
XD742971636
深度学习机器学习深度学习人工智能
文章目录获取TensorRT-LLM代码:构建docker镜像并安装TensorRT-LLM:运行docker镜像:安装依赖魔改下部分package代码:量化:构建图:全局参数插件配置常用配置参数测试推理是否可以代码推理CLI推理性能测试小结验证是否严重退化使用NVIDIATriton部署在线推理服务器代码弄下来编译镜像启动容器安装依赖量化构建trtengines图Triton模板说明实操发起Tr
- Jetson Orin NX Super安装TensorRT-LLM
u013250861
#LLM/部署&推理elasticsearch大数据搜索引擎
根据图片中显示的JetsonOrinNXSuper系统环境(JetPack6.2+CUDA12.6+TensorRT10.7),以下是针对该平台的TensorRT-LLM安装优化方案:一、环境适配调整基于你的实际配置:JetPack6.2(含CUDA12.6,TensorRT10.7)Python3.10.12aarch64架构需选择适配的TensorRT-LLM版本。由于官方预编译包可能未覆盖此
- TensorRT-LLM:大模型推理加速引擎的架构与实践
前言:技术背景与发展历程:随着GPT-4、LLaMA等千亿级参数模型的出现,传统推理框架面临三大瓶颈:显存占用高(单卡可达80GB)、计算延迟大(生成式推理需迭代处理)、硬件利用率低(Transformer结构存在计算冗余)。根据MLPerf基准测试,原始PyTorch推理的token生成速度仅为12.3tokens/s(A100显卡)。一、TensorRT-LLM介绍:TensorRT-LLM是
- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- 使用numpy或pytorch校验两个张量是否相等
文章目录1、numpy2、pytorch做算法过程中,如果涉及到模型落地,那必然会将原始的深度学习的框架训练好的模型转换成目标硬件模型的格式,如onnx,tensorrt,openvino,tflite;那么就有对比不同格式模型输出的一致性,从而判断模型转换是否成功。1、numpy用到的核心代码就一行,就是:importnumpyasnpnp.testing.assert_allclose(act
- YOLOV10的tensorrt C++部署
dddccc1234
YOLO
根据博客进行python版本安装YOLOv10最全使用教程(含ONNX和TensorRT推理)-CSDN博客并将pt转为onnx:yoloexportmodel=yolov10s.ptformat=onnxopset=13simplify然后采用:https://github.com/hamdiboukamcha/yolov10-tensorrt.git进行c++编译配置好cuda11.7tens
- tensorRT 与 torchserve-GPU性能对比
joker-G
计算机视觉pytorchpython
实验对比前端时间搭建了TensorRT、Torchserve-GPU,最近抽时间将这两种方案做一个简单的实验对比。实验数据Cuda11.0、Xeon®62423.1*80、RTX309024G、Resnet50TensorRT、Torchserve-GPU各自一张卡搭建10进程接口,感兴趣的可以查看我个人其他文章。30进程并发、2000张1200*720像素图像的总量数据TensorRT的部署使用
- YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践
pk_xz123456
python算法仿真模型YOLO人工智能rnn深度学习开发语言lstm
以下是针对在RDK5开发板(基于NVIDIAJetsonOrin平台)部署YOLOv8模型的详细技术指南,涵盖从模型转换、优化到部署的全流程:YOLOv8模型在RDK5开发板上的部署指南:.pt到.bin转换与优化实践——基于TensorRT的高性能嵌入式部署方案第一章:技术背景与核心概念1.1RDK5开发板硬件架构NVIDIAJetsonOrinNX核心参数:1024-coreAmpereGPU
- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 昇腾AI生态组件全解析:与英伟达生态的深度对比
随着人工智能技术的快速发展,国产AI芯片的崛起正在改变全球计算产业的格局。华为昇腾(Ascend)系列AI处理器凭借自主创新的达芬奇架构,构建了完整的软硬件生态体系。本文将从核心组件对比、显卡性能对标两个维度,深入剖析昇腾与英伟达(NVIDIA)生态的技术差异与适用场景。一、昇腾核心组件与英伟达对标分析1.推理引擎:MindIEvsTensorRT昇腾MindIE1.0.0基于昇腾芯片的深度学习推
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- Java全栈AI平台实战:从模型训练到部署的革命性突破——Spring AI+Deeplearning4j+TensorFlow Java API深度解析
墨夶
Java学习资料3java人工智能spring
一、背景与需求:为什么需要Java驱动的AI平台?某医疗影像公司面临以下挑战:多语言开发混乱:Python训练模型,C++部署推理,Java调用服务,导致维护成本高昂部署效率低下:PyTorch模型需手动转换ONNX格式,TensorRT优化耗时2小时/模型实时性不足:视频流分析延迟达3秒,无法满足急诊场景需求通过Java全栈AI平台,我们实现了:端到端开发:Java调用PyTorch训练模型,直
- 【Bug】Could not locate zlibwapi.dll. Please make sure it is in your library path!
报错信息:使用tensort加速,cmake编译失败,提示缺少zlibwapi.dll文件Couldnotlocatezlibwapi.dll.Pleasemakesureitisinyourlibrarypath!解决方案:从以下链接下载zlibwapi.dllhttp://www.winimage.com/zLibDll/我是在windows10系统下进行的TensorRT加速下载得到的压缩包
- win10安装wsl2(ubuntu20.04)并安装 TensorRT-8.6.1.6、cuda_11.6、cudnn
狄龙疤
wslwsl2win10tensorrtcudacudnnubuntu
参考博客:1.CUDA】如何在windows上安装Ollama3+openwebui(docker+WSL2+ubuntu+nvidia-container):https://blog.csdn.net/smileyan9/article/details/1403916672.在Windows10上安装WSL2:https://download.csdn.net/blog/column/10991
- 【代码分析】TensorRT sampleINT8 详解
HaoBBNuanMM
目录前言代码分析Main入口构建(Build)网络BatchStream推理(Infer)过程资源释放前言TensorRT可以通过INT8量化处理网络,然后大幅加速网络推理速度,本文旨在详细分析MNISTINT8Sample的代码,解释如何使用TensorRT对网络做INT8量化处理。关于INT8量化的背景知识可以参考博文TensorRTINT8校准与量化原理代码分析sampleINT8的gith
- TensorRT × TVM 联合优化实战:多架构异构平台的统一推理加速与性能调优全流程
观熵
大模型高阶优化技术专题架构人工智能
TensorRT×TVM联合优化实战:多架构异构平台的统一推理加速与性能调优全流程关键词TensorRT、TVM、异构推理优化、跨平台部署、GPU加速、NPU融合、自动调度、深度学习推理引擎、性能调优摘要在深度学习模型推理部署场景中,面对GPU、NPU、CPU等多架构异构平台的并存,如何实现统一的高性能推理优化成为企业工程落地的关键挑战。本文聚焦TensorRT与TVM的联合优化策略,从平台结构适
- retinaface在ubuntu20.04(wsl2)下使用tensorrt(c++)部署
狄龙疤
c++retinafacetensorrtcudaopencv人脸识别神经网络模型
1.参考博客:1.RetinafaceTensorrtPython/C++部署:https://blog.csdn.net/weixin_45747759/article/details/1245340792.B站视频教程:https://www.bilibili.com/video/BV1Nv4y1K727/3.Retinaface_Tensorrtgithub仓库:https://github
- 独家首发!低照度环境下YOLOv8的增强方案——从理论到TensorRT部署
向哆哆
YOLO架构yolov8
文章目录引言一、低照度图像增强技术现状1.1传统低照度增强方法局限性1.2深度学习-based方法进展二、Retinexformer网络原理2.1Retinex理论回顾2.2Retinexformer创新架构2.2.1光照感知Transformer2.2.2多尺度Retinex分解2.2.3自适应特征融合三、YOLOv8-Retinexformer实现3.1网络架构修改3.2联合训练策略四、实验与
- win10 环境进行 python + pytorch + yolov8 + tensorRT( c++版 ) 测试过程记录
狄龙疤
pythonpytorchc++cudatensorRTyolov8计算机视觉
参考博客:1.YOLOv8模型转换pt->onnx(附上代码):https://blog.csdn.net/2303_80018785/article/details/1381949612.yolov8的TensorRT部署(C++版本):https://blog.csdn.net/liujiahao123987/article/details/133892746test.cpp就是使用此博客的d
- 【实战分享】TensorRT+LLM:大模型推理性能优化初探
fengbeely
java
TensorRT-LLM初体验千呼万唤始出来,备受期待的Tensorrt-LLM终于发布,发布版本0.5.0。github:https://github.com/NVIDIA/TensorRT-LLM/tree/main1.介绍TensorRT-LLM可以视为TensorRT和FastTransformer的结合体,旨为大模型推理加速而生。1.1丰富的优化特性除了FastTransformer对T
- NIPS-2013《Distributed PCA and $k$-Means Clustering》
Christo3
机器学习kmeans算法大数据人工智能
推荐深蓝学院的《深度神经网络加速:cuDNN与TensorRT》,课程面向就业,细致讲解CUDA运算的理论支撑与实践,学完可以系统化掌握CUDA基础编程知识以及TensorRT实战,并且能够利用GPU开发高性能、高并发的软件系统,感兴趣可以直接看看链接:深蓝学院《深度神经网络加速:cuDNN与TensorRT》核心思想该论文的核心思想是将主成分分析(PCA)与分布式kkk-均值聚类相结合,提出一种
- NVIDIA 实现通义千问 Qwen3 的生产级应用集成和部署【2025年 5月 2日】
u013250861
#LLM/部署&推理jetson
阿里巴巴近期发布了其开源的混合推理大语言模型(LLM)通义千问Qwen3,此次Qwen3开源模型系列包含两款混合专家模型(MoE)235B-A22B(总参数2,350亿,激活参数220亿)和30B-A3B,以及六款稠密(Dense)模型0.6B、1.7B、4B、8B、14B、32B。现在,开发者能够基于NVIDIAGPU,使用NVIDIATensorRT-LLM、Ollama、SGLang、vLL
- YOLO学习笔记 | YOLO11对象检测,实例分割,姿态评估的TensorRT部署c++
单北斗SLAMer
YOLO学习从零到1YOLO机器学习深度学习c++python
以下是YOLOv11在TensorRT上部署的步骤指南,涵盖对象检测、实例分割和姿态评估:1.模型导出与转换1.1导出ONNX模型importtorchfrommodels.experimentalimportattempt_loadmodel=attempt_load('yolov11s.pt',fuse=True)model.eval
- ✅ TensorRT Python 安装精简流程(适用于 Ubuntu 20.04+)
dbcccccsds
pythonubuntu开发语言
安装TensorRTPython轮子的步骤确保pip和wheel模块已更新并安装:参考链接python3-mpipinstall--upgradepippython3-mpipinstallwheel1.确认环境要求Python:版本3.8-3.13OS:Ubuntu20.04+或Windows10+CPU:x86_64或ARMSBSA架构安装前确保pip、wheel是最新的:python3-mp
- TensorRT-LLM——优化大型语言模型推理以实现最大性能的综合指南
知来者逆
LLM语言模型人工智能自然语言处理TensorRTLLM大语言模型深度学习
引言随着对大型语言模型(LLM)的需求不断增长,确保快速、高效和可扩展的推理变得比以往任何时候都更加重要。NVIDIA的TensorRT-LLM通过提供一套专为LLM推理设计的强大工具和优化,TensorRT-LLM可以应对这一挑战。TensorRT-LLM提供了一系列令人印象深刻的性能改进,例如量化、内核融合、动态批处理和多GPU支持。这些改进使推理速度比传统的基于CPU的方法快8倍,从而改变了
- tensorrt部署yolov8
张张张子
YOLOpython边缘计算
记录一下部署过程遇到的问题,我是要再jstson上部署,首先导出onnx文件,没什么问题,然后又两种方案转为engine文件1:trtexec.exe--onnx=best.onnx--saveEngine=best.engine--fp16tensorrt库命令转换,过程中会遇到一些问题,这里不细讲了,可以查。2:用yolov8官方版本转换,较为容易,官方库写的比较好最后会得到trt文件或eng
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,