E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
地理信息系统(GIS)学习笔记
学习笔记
:oracle online系列:oracle:Per-Process PGA memory limit
我们的文章会在微信公众号IT民工的龙马人生和博客网站(www.htz.pw)同步更新,欢迎关注收藏,也欢迎大家转载,但是请在文章开始地方标注文章出处,谢谢!由于博客中有大量代码,通过页面浏览效果更佳。本文转自朋友的真实案例分享。oracleonline系列:oracle:Per-ProcessPGAmemorylimit前几日,东区某客户的19crac出现了ORA-04030,从报错的trace来
认真就输DBA
·
2025-07-08 22:24
Oracle
学习随笔
学习
笔记
oracle
【学习教程】遥感、
GIS
和GPS技术在水文、气象、灾害、生态、环境及卫生等领域中的应用
【内容简介】:第一讲3S技术及软件简介1.13S技术及应用案例文献解析1.23S技术软件(Arc
GIS
、ENVI)简介1.3如何快速掌握Arc
GIS
1.4Arc
GIS
界面及数据加载1.5文档保存方式第二讲
·
2025-07-08 21:17
机器学习知识点复习 上(保研、复试、面试)百面机器
学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
·
2025-07-08 20:36
SAGA
GIS
使用———加载以及显示影像
SAGA的全称为SystemforAutomatedGeoscientificAnalyses,它是免费的
地理信息系统
开源软件,SAGA有多个标准的模块库,详细介绍可参考:https://en.wikipedia.org
·
2025-07-08 18:59
SAGA——Textural Features(纹理特征)提取
在第一篇的文章中已经简单介绍了SAGA
GIS
的相关概念以及如何使用SAGA
GIS
加载影像和进行分割。
竹_猗
·
2025-07-08 18:59
SAGA
GIS
Q
GIS
004:Q
GIS
软件工具箱介绍
一、Q
GIS
工具箱介绍Q
GIS
(以V3.0版为例)除去线上插件外,共包含900多个地理处理工具。
94_31762031
·
2025-07-08 18:28
004-QGIS软件入门教程
QGIS软件工具箱
QGIS工具箱
QGIS工具介绍
QGIS工具说明
QGIS工具箱功能
QGIS算法说明
SAGA
GIS
使用教程
SAGA
GIS
使用教程——以地形湿度指数(topographicwetnessindex,TWI)和水流功率指数(streampowerindex,SPI)为例SAGA
GIS
简介与下载SAGA
GIS
是免费
GIS_飞飞飞
·
2025-07-08 18:26
GIS
TWI
SPI
SAGA
GIS
GIS
DPDK探测设备并初始化
本文整理下之前的
学习笔记
,基于DPDK17.11版本源码分析。主要看一下DPDK探测网卡设备,并进行初始化的流程,用到了类似kernel中的总线-设备-驱动模型。
分享放大价值
·
2025-07-08 17:51
DPDK
dpdk
probe
设备初始化
mmap
Error response from daemon: Get “https://re
gis
try-1.docker.io/v2/“: net/http
修改配置指定国内镜像加速源{"builder":{"gc":{"defaultKeepStorage":"20GB","enabled":true}},"experimental":false,"re
gis
try-mirrors
设计师Linda
·
2025-07-08 16:43
运维
docker
npm publish方式将npm包发布到nexus私服命令整理
npmadduser-re
gis
tryhttp://xxx.xx.x.x:xxxx/repository/npm-hosted/或者npmlogin--re
gis
try=http://xxx.xx.x.x
·
2025-07-08 16:42
动手学深度学习13.7. 单发多框检测(SSD)-笔记&练习(PyTorch)
以下内容为结合李沐老师的课程和教材补充的
学习笔记
,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。
scdifsn
·
2025-07-08 13:22
深度学习
笔记
pytorch
ssd
单发多框检测(SSD)
目标检测
mAP评价
动手学深度学习3.3线性回归的简洁实现-笔记&练习(PyTorch)
以下内容为结合李沐老师的课程和教材补充的
学习笔记
,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。
scdifsn
·
2025-07-08 13:22
深度学习
线性回归
笔记
pytorch
OpenStack 扩展镜像和虚拟机实例目录大小
参考:https://blog.csdn.net/Tomstrong_369/article/details/52574090https://blog.csdn.net/china
gis
soft/article
chenjiang7359
·
2025-07-08 12:48
Python
学习笔记
2-垃圾回收机制
Python的垃圾回收机制是自动管理内存的系统,用于回收不再使用的内存,以避免内存泄漏和优化内存使用。Python使用引用计数(ReferenceCounting)和垃圾回收(GarbageCollection)两种方式来管理内存。1.引用计数(ReferenceCounting)引用计数是Python内存管理的基础机制。每个对象都维护一个引用计数器,记录有多少个引用指向该对象。当一个新的引用指向
Carrie_Lei
·
2025-07-08 12:45
Python
python
学习
笔记
Python数据分析
学习笔记
:字符串统计
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
NIKEeri
·
2025-07-08 11:39
python
pandas
字符串匹配
python
数据分析
学习
【机器学习|
学习笔记
】随机森林(Random Forest, RF)详解,附代码。
【机器学习|
学习笔记
】随机森林(RandomForest,RF)详解,附代码。【机器学习|
学习笔记
】随机森林(RandomForest,RF)详解,附代码。
努力毕业的小土博^_^
·
2025-07-08 09:56
机器学习基础算法优质笔记1
机器学习
学习
笔记
随机森林
人工智能
PyTorch深度学习快速入门教程【小土堆】详细
学习笔记
(第1-11个视频笔记)
本
学习笔记
源自于B站up主【我是土堆】的视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)
胡说八道的Dr. Zhu
·
2025-07-08 08:49
深度学习
pytorch
学习
关于 Linux中系统调优的一些笔记
写在前面推送的的邮件里看到有大佬讲的公共课,听了之后这里整理
学习笔记
。因为是公开课,所以讲的很浅,没接触过,这里做为了解,长长见识。
山河已无恙
·
2025-07-08 08:45
Linux笔记
Linux
性能调优
1024程序员节
linux
运维
CSC研修计划的书写
博主最近在申请CSC,所以也会更新一下自己的
学习笔记
,有需要的可以关注我一下,同时有问题大家可以一起交流一下啊一要求(fromCSC官网)①拟留学专业(研究课题)在国内外研究情况及水平;②拟选择的留学国别
·
2025-07-08 07:07
【机器
学习笔记
Ⅱ】9 模型评估
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
巴伦是只猫
·
2025-07-08 07:07
机器学习
机器学习
笔记
人工智能
【机器
学习笔记
Ⅱ】7 多类分类
1.多类分类(Multi-classClassification)定义多类分类是指目标变量(标签)有超过两个类别的分类任务。例如:手写数字识别:10个类别(0~9)。图像分类:区分猫、狗、鸟等。新闻主题分类:政治、经济、体育等。特点互斥性:每个样本仅属于一个类别(区别于多标签分类)。输出要求:模型需输出每个类别的概率分布,且概率之和为1。实现方式One-vs-Rest(OvR):训练K个二分类器(
巴伦是只猫
·
2025-07-08 07:06
机器学习
机器学习
笔记
分类
qiankun 微前端框架子应用间通信方法详解
以下是全面的通信方法总结:1.基于props的通信(主应用与子应用)主应用向子应用传递数据://主应用注册子应用时传递数据re
gis
terMicroApps([{name:'subApp',entry:
啃火龙果的兔子
·
2025-07-08 06:04
开发DEMO
前端框架
【DeepSeek开源周】Day 4:DualPipe & EPLB
学习笔记
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
蓝海星梦
·
2025-07-08 06:00
DeepSeek开源周探秘
开源
学习
笔记
人工智能
云计算
分布式
【机器
学习笔记
Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
·
2025-07-08 06:29
【机器
学习笔记
Ⅲ】3 异常检测算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
巴伦是只猫
·
2025-07-08 04:17
机器学习
机器学习
笔记
算法
【机器
学习笔记
Ⅲ】4 特征选择
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
巴伦是只猫
·
2025-07-08 04:17
机器学习
机器学习
笔记
人工智能
机器
学习笔记
二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
·
2025-07-08 04:46
OpenHarmony解读之设备认证:Pake协议详解与实战
往期推文全新看点(文中附带最新·鸿蒙全栈
学习笔记
)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?
陈乔布斯
·
2025-07-08 04:16
鸿蒙开发
HarmonyOS
OpenHarmony
harmonyos
分布式
鸿蒙开发
软总线
openHarmony
嵌入式硬件
【ESP32最全
学习笔记
(基础篇)——7.ESP32 ADC – 使用 Arduino IDE 读取模拟值】
关于本教程:ESP32基础篇1.ESP32简介2.ESP32Arduino集成开发环境3.VS代码和PlatformIO4.ESP32引脚5.ESP32输入输出6.ESP32脉宽调制7.ESP32模拟输入☑8.ESP32中断定时器9.ESP32深度睡眠
「已注销」
·
2025-07-07 23:40
ESP32学习笔记
学习
ESP32
单片机
嵌入式硬件
Arduino
基于Flutter的web登录设计
本文档中的前端代码示例摘录自项目中的smarthomefe目录,后端服务代码摘录自fc
giS
erver目录。这些代码共同构成了完整的登录系统实现。项目源码:https
aiprtem
·
2025-07-07 21:52
Flutter
web
嵌入式Linux
flutter
前端
计算机网络(网页显示过程,TCP三次握手,HTTP1.0,1.1,2.0,3.0,JWT cookie)
前言最近一直在看后端开发的面经,里面涉及到了好多计算机网络的知识,在这里以问题的形式写一个
学习笔记
(其中参考了:JavaGuide和小林coding这两个很好的学习网站)1.当键入网址后,到网页显示,其间发生了什么
老虎0627
·
2025-07-07 19:38
计算机网络
计算机网络
tcp/ip
网络协议
Redis Geo结构详解:从原理到实战,手把手教你玩转地理位置功能
以前做这种功能可能需要依赖MySQL的经纬度计算,或者上专业的
GIS
数据库(比如Post
GIS
),但Redis3.2版本后推出的Geo(地理信息)模块,用极简的API和高效的性能,完美解决了这类问题。
码不停蹄的玄黓
·
2025-07-07 19:06
redis
数据库
缓存
PyQt5—QTextEdit
学习笔记
第二章控件学习一、QTextEdit基础认知QTextEdit是PyQt/PySide框架中用于处理富文本内容的强大控件,它不仅支持纯文本编辑,还能处理HTML、图片等复杂内容,是开发文本编辑器、日志查看器等应用的核心组件。二、最简单的QTextEdit实现下面是一个创建QTextEdit并显示的基础案例,适合零基础入门:importsysfromPyQt5.QtWidgetsimportQApp
寄思~
·
2025-07-07 18:32
Python——PyQt5笔记
qt
学习
笔记
python
陈强《计量经济学及Stata应用》
学习笔记
——持续更新
1导论1.1什么是计量经济学econometrics几种关系:相关关系、因果关系、逆向因果关系reversecausality、双向因果关系被解释变量dependentvariable解释变量explanatoryvariable=regressor=自变量independentvariable=协变量covariateunobservable的误差项errorterm=随机扰动项stochast
WangSoooCute
·
2025-07-07 16:23
学习
笔记
医咖会免费STATA教程
学习笔记
——单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
Unacandoit
·
2025-07-07 16:49
stata
单因素方差分析
两步移动搜索法(2SFCA)python
实现两步移动搜索法(Two-StepFloatingCatchmentAreaMethod,2SFCA)是一种广泛应用于
地理信息系统
(
GIS
)领域的方法,用于评估设施的空间可达性。
我在北京coding
·
2025-07-07 15:17
python
python
开发语言
【数字孪生】【
GIS
】【实战】高德地图
GIS
开发实战:从基础到交互进阶
高德地图
GIS
开发实战:从基础到交互进阶一、你将学到什么?
GIS
开发核心能力地图初始化与个性化样式配置(道路、陆地、POI自定义)。自定义标注(Marker)的创建、居中定位与图标替换。
患得患失949
·
2025-07-07 15:43
GIS
数字孪生
交互
状态模式
Lo
gis
tic回归预测模型2:R语言实现模型的内部和外部验证
前面我们讲了lo
gis
tic回归预测模型的建立,今天介绍的是模型的验证,可以在训练集和验证集中通过ROC曲线、校准曲线和决策曲线分别进行验证。
·
2025-07-07 13:34
【机器
学习笔记
Ⅱ】11 决策树模型
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
巴伦是只猫
·
2025-07-07 12:24
机器学习
机器学习
笔记
决策树
【机器
学习笔记
Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
·
2025-07-07 12:24
【机器
学习笔记
Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
·
2025-07-07 12:23
【机器
学习笔记
Ⅰ】6 多类特征
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
巴伦是只猫
·
2025-07-07 12:53
机器学习
机器学习
笔记
人工智能
机器
学习笔记
——支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
star_and_sun
·
2025-07-07 12:23
机器学习
笔记
支持向量机
Simscape入门教程
文章目录物理网络连接到Simulink运行本文是官方教程构造物理模型的基本步骤的
学习笔记
,旨在建立一个带有控制器的质量-弹簧-阻尼系统。
微小冷
·
2025-07-07 12:51
机器人
Matlab
simulink
simscape
弹簧阻尼
multibody
【机器
学习笔记
Ⅰ】7 向量化
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
巴伦是只猫
·
2025-07-07 12:48
机器学习
机器学习
笔记
人工智能
大模型RLHF强化
学习笔记
(二):强化学习基础梳理Part2
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.4强化学习分类根据数据来源划分Online:智能体与环境实时交互,如Q-Learning、SARSA、Actor-CriticOffline:智能体使用预先收集的数据集进行学习根据策略更新划分On-Policy:学习和行为策略是相同的,数据是按照当前策略生成的,如SARSAOff-Policy:学习策
Gravity!
·
2025-07-07 11:17
大模型
笔记
大模型
LLM
强化学习
人工智能
Angular6
学习笔记
——路由详解
angular6.x系列的
学习笔记
记录,仍在不断完善中,学习地址:https://www.angular.cn/guide/template-syntaxhttp://www.ngfans.net/topic
男人要霸气
·
2025-07-07 10:35
Angular6
Gemini CLI 工具注册系统深度解析:从动态发现到智能执行的完整架构
通过对tool-re
gis
try.ts和tools.ts的深入分析,我们可以看到一个插件化工具架构¹的完整实现。
·
2025-07-07 10:34
408考研逐题详解:2010年第18题——CPU寄存器
存储器地址寄存器(MAR,MemoryAddressRe
gis
ter):用于存储CPU即将访问的内存地址(如
·
2025-07-07 09:57
Golang
学习笔记
:协程
Golang
学习笔记
参考文档一链接:https目录一.协程用在哪里?协程需要解决什么问题?二.协程的框架(Linux的例子)三.如何在多种状态高效切换?
夜以冀北
·
2025-07-07 06:09
golang
学习
上一页
3
4
5
6
7
8
9
10
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他