- 河南萌新联赛2025第(二)场:河南农业大学(整除分块,二进制,树的搜索)
yi.Ist
开发语言c++算法树的遍历整除分块DFS二进制
文章目录@[toc]A、约数个数和(整除分块)思路代码扩展:取模(整除分块)思路代码B、异或期望的秘密二进制位的周期性规律核心思路代码详细解释1.快速幂函数qpow2.统计函数count3.主逻辑solve完整代码D、开罗尔网络的备用连接方案思路建树搜索扩展:插排串联(树的搜索)题目大意思路代码I、猜数游戏代码K、打瓦代码M、米娅逃离断头台思路代码小结Whenthesharpestwordswan
- 板子 5.29--7.19
板子5.29–7.19目录1.树状数组2.KMP3.矩阵快速幂4.数位DP5.状压枚举子集6.快速幂(新版7.priority_queue8.dijkstra9.单调栈10.debug内容1.树状数组//树状数组快速求前缀和/前缀最大值//维护位置数量(离散化)...//(区间加区间求和)维护差分数组初始化add(i,a[i]-a[i-1])//tr1:维护d[i]的区间和。tr2:维护i⋅d[i
- 运用逆元优化组合计算#数论
ysa051030
java算法数据结构
数论基础知识和模板-CSDN博客问题分析题目要求统计满足特定条件的排列数目。关键在于:从给定的数组中选择两个数作为n和m剩余的数必须能够组成n个m或m个n的结构计算所有可能的有效排列数目完整#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9+7;//快速幂计算a^b%MODLLqpow(LLa,LLb){LLres=1;while(
- 【教程4>第7章>第23节】基于FPGA的RS(204,188)译码verilog实现7——欧几里得迭代算法模块
fpga和matlab
#第7章·通信—信道编译码fpga开发RS译码欧几里得迭代教程4
目录1.软件版本2.RS译码器逆元欧几里得算法模块原理分析3.RS译码器逆元欧几里得算法模块的verilog实现3.1RS译码器逆元欧几里得算法模块verilog程序3.2程序解析欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程3:simulink入门60例》
- 【递归、搜索与回溯算法】递归
T哇
递归搜索与回溯算法算法
递归递归汉诺塔(easy)合并两个有序链表(easy)反转链表(easy)两两交换链表中的节点(medium)Pow(x,n)-快速幂(medium)递归在解决⼀个规模为n的问题时,如果满⾜以下条件,我们可以使⽤递归来解决:a.问题可以被划分为规模更⼩的⼦问题,并且这些⼦问题具有与原问题相同的解决⽅法。b.当我们知道规模更⼩的⼦问题(规模为n-1)的解时,我们可以直接计算出规模为n的问题的解。c.
- 扩展欧几里德算法 递归法 递推法 手算法 原理及实现
黎哩吖
算法人工智能机器学习
扩展欧几里德算法递归法递推法手算法原理及实现顾名思义,扩展欧几里德算法是在欧几里德算法基础上扩展的算法.欧几里德算法和扩展欧几里德算法在用途上的区别:欧几里德算法(gcd):即求两个整数的最大公约数.扩展欧几里德算法:用于求乘法逆元.用于求贝组等式的一个解.欧几里德算法即辗转相除法.C语言实现:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}注意此算法的终止条
- 手算逆元及手动模拟扩展欧几里得算法及思路推导
一上午的一个小推导先给出exgcd的代码吧intexgcd(inta,intb,int&x,int&y){///x,y起初不知道,是递归往上求解x,yif(b==0){x=1,y=0;returna;///两处return}intd=exgcd(b,a%b,x,y);inttmp=x;x=y,y=tmp-(a/b)*y;returnd;///记得要返回d啊///【a*x+b*y=1中,x是a在模b
- 【密码学】扩展欧几里得算法例题
应付考试的写法:注意:RSA加解密、签名时:计算的是关于φ(n)的逆元不是直接关于n的逆元,d是e的逆元,φ(n)与e互素才可以有逆元已知n=pxq,计算φ(n),计算d:扩展欧几里得算法流程:题目:d·e=1mod96,e=5,求d递归(不断的做除法,辗转相除)的计算一个三元组。有两个初始的三元组:设三元组(x,y,z),x,y,z满足:因为要算5对96的逆元,一般把大的放在前面即:96*x+5
- 扩展欧几里得算法&乘法逆元
GZkx
数论之旅简单题乘法逆元
扩展欧几里得算法——exgcd主要有两个重要的用途:1.求乘法逆元(下面的例题就是)a*b%mod==1->a与b互为在mod意义下的逆元2.求二元一次线性方程exgcd(a,b,x,y)即为a,b的最大公约数,,令gcd(a,b)=a*x+b*y,则x,y也可以得出来了不懂gcd(最大公约数)的童鞋可以先了解一下哦Description给出2个数M和N(M#include#includeusin
- 扩展欧几里得算法求逆元
hesorchen
#扩展欧几里得算法#逆元
扩展欧几里得算法应该是最优的求逆元算法之一,他和费马小定理具有同样的时间复杂度O(log(n))O(log(n))O(log(n)),但是费马小定理需要模数为质数,扩展欧几里得算法则不需要。逆元定义若aaa与ppp互素,则满足(a×x)modp=1(a\timesx)modp=1(a×x)modp=1的xxx为aaa的逆元。显然,有(k×p+1)modp=1(k\timesp+1)modp=1(k
- mbedtls学习--大数运算
Yanjing-233
mbedtlsmbedtls安全面试算法
文章目录库文件依赖宏接口示例代码算法分析数位统计读取字符串输出字符串数值比较加减计算乘法运算大数除法取模运算指数运算求取最大公约数模逆运算大数计算,顾名思义,指超出64位的数的乘法运算、指数运算和模逆运算,其中模逆运算,特指求逆元,所谓乘法逆元,例如:2∗9mod17=12*9mod17=12∗9mod17=1则9是2关于模17的逆元(余数为1的被除数)或者2*9与1关于模17同余即:9=2−1m
- AT_abc354_a [ABC354A] Exponential Plant 题解
lhschris
题解
洛谷AT思路直接暴力。A题还是简单的代码#include#defineintlonglongusingnamespacestd;intn,day=1,num=1;signedmain(){cin>>n;while(num<=n){num+=pow(2,day);//可以写一个快速幂但是不必要day++;}cout<<day;}AC记录
- 算法与数据结构:位运算与快速幂
Cachel wood
算法与数据结构算法数据结构python开发语言mysqlhivesql
文章目录位运算快速幂位运算在计算机的世界中,一切数字都是二进制的。类比于现实世界中我们所使用的十进制,二进制即为「逢二进一」的运算体系。我们以B、D来分别标记二进制与十进制,例如10D表示十进制中的10,而10B则表示二进制中的10。回顾十进制,10D=1×101+0×100=10123D=1×102+2×101+3×100=12310D=1\times10^1+0\times10^0=10\\1
- 【python】【矩阵快速幂】【超时解决】3335.字符串转换后的长度I
窝窝没有头
python矩阵leetcode
3335.字符串转换后的长度I根据题意,可以将本题抽象为:用v[i]v[i]v[i]表示字符表第i个字母(下标从0开始)在s串中的频数v[0.....24]v[0.....24]v[0.....24]的元素全部往右移一位,v[25]v[25]v[25]被加在v[0]v[0]v[0]和v[1]v[1]v[1]上每次变换可以看成是v乘上一个矩阵AA=[0100⋯0000010⋯0000001⋯000⋮
- 扩展欧几里得算法简介及代码实现
hnjzsyjyj
信息学竞赛#算法数学基础扩展欧几里得算法裴蜀定理
【扩展欧几里得算法简介】●扩展欧几里得算法(ExtendedEuclideanAlgorithm)是欧几里得算法的扩展版本,不仅能计算两个整数的最大公约数(GCD),还能找到满足贝祖等式(Bézout'sIdentity)ax+by=gcd(a,b)的整数解x和y。它在数论、密码学等领域有重要应用,例如求解模的逆元、求解线性同余方程等。●扩展欧几里得算法求ax+by=gcd(a,b)特解的方法如下
- 初等数论 --- 同余、欧拉定理、费马小定理、求逆元
chstor
算法笔记
文章目录一、同余二、欧拉定理三、费马小定理四、扩展欧几里得算法4.1裴蜀定理五、一元线性同余方程六、逆元求逆元方法一、扩展欧几里得算法求逆元方法二、费马小定理加快速幂一、同余定义当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a≡b(mod m)当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a\equivb(\modm)当两个整数a,b除以同一个正整
- 互质数的个数(快速幂+欧拉函数)
L_59
算法java
题目描述给定a,b,求1≤x<中有多少个x与互质。由于答案可能很大,你只需要输出答案对998244353取模的结果。输入格式输入一行包含两个整数分别表示a,b,用一个空格分隔。输出格式输出一行包含一个整数表示答案。样例输入25样例输出16提示对于30%的评测用例,≤106;对于70%的评测用例,a≤10^6,b≤10^9;对于所有评测用例,1≤a≤10^9,1≤b≤10^18。思路:为了解决这个问
- 基本算法之龟速乘
Ayanami_Reii
算法c++笔记蓝桥杯
目录题目算法标签:快速幂,龟速乘思路代码题目90.64位整数乘法算法标签:快速幂,龟速乘思路利用二进制拆分思想,因为直接计算乘法时间复杂度是O(1)O(1)O(1),但是二进制拆分时间复杂度是O(logn)O(\logn)O(logn),因此叫龟速乘代码#include#include#includeusingnamespacestd;typedeflonglongLL;intmain(){io
- 数论---求组合数
@松田
算法c++组合数数论
快速幂:数论-----快速幂-CSDN博客快速幂求逆元:数论----快速幂求逆元-CSDN博客筛质数:筛质数----CSDN博客求组合数I//10万组a,busingnamespacestd;constintN=2010,mod=1e9+7;intc[N][N];voidinit(){for(inti=0;i>n;while(n--){inta,b;cin>>a>>b;coutusingnames
- LeetCode第50题:Pow(x, n) 解题思路与代码实现
夏曦安
本文还有配套的精品资源,点击获取简介:LeetCode是程序员提升算法技能的平台,第50题“Pow(x,n)”是考察指数运算和算法优化的典型问题。本文通过基础情况、二分法、递归/迭代实现和优化四个步骤,详细介绍了求解x的n次幂的高效算法策略,并提供了一种快速幂算法的Python实现。快速幂算法通过位运算将时间复杂度降低到O(logn),有助于程序员在面试和实际编程中快速准确地解决问题。1.Leet
- C++快速幂详解
「已注销」
编程信息学竞赛数学定理解释与应用c++开发语言后端windowsgnu
快速幂相较于普通的幂,具有占用空间少,效率更高等优点,全面碾压普通的幂。在计算量较小时,二者相差无几,但数据规模一旦上来了,差距也就出来了。所以,我们重点讲解快速幂首先给出一个问题给定a,b,p求a^b%p的值1unsignedlonglonga,b,p,x=1;intmain(){scanf("%llu%llu%llu",&a,&b,&p);for(inti=1;i<=b;i++){x=x*a%
- c++快速幂
玛卡巴卡哈哈
算法c++
快速幂算法是一种用于高效计算幂的算法,其基本思路是通过二进制位来优化计算过程。它能有效地减少计算次数,特别是在对大数进行幂运算时,速度更快。快速幂算法的基本原理是:将指数表示为二进制形式,然后通过对二进制位数进行迭代分解,进行幂次运算。以求$a^b$为例,假设指数$b$的二进制表示为$b_kb_{k-1}\cdotsb_1b_0$,其中$b_i$为二进制位,$k$为二进制位数。则有:$$a^b=a
- c++入门必学算法 快速幂
旧林墨烟
算法算法c++数据结构
一、什么是快速幂快速幂算法是用来快速计算指数表达式的值的,例如210000000,普通的计算方法2*2*2*2…乘10000000次,如果一个数字的计算都要计算那么多次的话,那么这个程序一定是失败的。学完快速幂之后就可以用几十次计算求出答案了二、快速幂思想及实现快速幂思想其实很简单,就是公式的转换1、当指数是偶数时,我们可以让指数除以2,底数乘以底数2、当指数是奇数时,我们可以将指数变为偶数例如2
- C++快速幂算法
TE_OIer_lqy
c++算法数据结构
C++快速幂算法什么是快速幂?快速幂的原理例题:洛谷P1226.【模板】快速幂||取余运算思路代码什么是快速幂?我们一般幂的运算都是C++能存的下的范围内但高级一点的幂的运算比如a,b<=107a,b<=10^7a,b<=107(aaa为底数,bbb为指数)显然C++存不下但肯定有取模的措施也是可以做的但当我们碰到一些奇奇怪怪的数据比如:a,b<=109a,b<=10^9a,b<=109你:nim
- C++快速幂算法q_pow() - 详解
每天砸电脑的精神小伙
算法c++算法开发语言
在C++编程中,我们常常需要解决类似于a^n之类的问题,这时候,我们就需要面临一个严重(说实话,不是很严重)的问题:超时此时,就可以用快速幂q_pow()算法来实现问题。首先,先了解一下什么是快速幂:快速幂,即一种利用简单二分算法实现的递归程序,用于实现a^n或a^n%m等问题。下面是快速幂的模板:(没有很难,只是用了一个非常非常非常简单的位运算)1.用if-else语句实现递归操作:typede
- C++实现快速幂算法
温柔倩影
编程算法c++数据结构编程
C++实现快速幂算法在进行指数运算的时候,使用循环逐个乘方效率较低,因此可以使用快速幂的算法来提高效率。快速幂算法的核心思想是将指数n转换成二进制形式,如10(1010),则2^10=2(1*20+02^1+12^2+0*23),因为20、21、23是2的幂次方,所以只需要计算出20、21、22、23即可得到2^10。以下是C++实现快速幂算法的源代码:#includeusingnamespace
- 逆元的求法
Li_yue_zhen
算法
逆元有三种计算方法,分别是扩展欧几里得、费马小定理推论(快速幂求法)以及线性递推法。一、扩展欧几里得法:1.推导:众所周知,扩展欧几里得是求解二元一次方程的方法。因为逆元的定义为:如果a*b≡1(modp),则:a、b在模p意义下互为逆元。由此,可设k*p+1=a*b。两边同减k*p,得:1=a*b-k*p。因为正负没有关系,所以可以变为a*b+k*p=1。因为我们知道a和p的值,所以可以把这个方
- 了解倒数的概念,乘法逆元就很好理解——解析之【逆元的概念】【逆元的求解方法】
灰阳阳
算法算法裴蜀定理欧几里得算法最大公约数逆元
目录前言一、逆元的概念1、基本定义示例1:a=3,m=7a=3,m=7a=3,m=7示例2:a=2,m=5a=2,m=5a=2,m=52、乘法逆元有什么用3、相关性质二、求解逆元的方法1、费马小定理求乘法逆元定义费马小定理求逆元的方法总结模板题2、扩展欧几里得算法求逆元定义扩展欧几里得算法求逆元的方法总结模板题3、递推公式求逆元定义递推公式的推导示例总结前言首先,下面讨论的是数论相关内容。主要研究
- 【算法】数论基础——逆元的概念与应用 python
查理零世
算法python
文章目录前言一、什么是逆元?二、逆元的存在条件三、如何计算逆元?1.扩展欧几里得算法(ExtendedEuclideanAlgorithm)2.使用费马小定理(Fermat'sLittleTheorem)四、应用场景示例:求排列数和组合数前言逆元(ModularMultiplicativeInverse)在模运算中是一个非常重要的概念,特别是在需要执行除法操作时。因为在模p的情况下,直接进行除法是
- 蓝桥杯考纲和知识点总结
不要飞升
算法与数据结构蓝桥杯java职场和发展
蓝桥杯考纲和知识点总结1.一些常用知识点快速幂快速幂很常用,要熟练求m^kmodp,时间复杂度O(logk)。intqmi(intm,intk,intp){intres=1%p,t=m;while(k){if(k&1)res=res*t%p;t=t*t%p;k>>=1;}returnres;}卡特兰数这个有时候会遇到,比如括号匹配数,求某种排列数量的题都可以带进来试试,求组合数的方法在6部分。给定
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt