- 背包DP之完全背包
GG不是gg
数据结构与算法分析#算法分析与设计动态规划
背包DP之完全背包一、完全背包基础认知1.1问题定义1.2核心特征二、完全背包的状态设计与递推2.1状态定义2.2递推关系2.3关键:正序遍历容量三、代码实现3.1基础二维DP实现3.2空间压缩优化优化说明:四、实例推演4.1输入数据4.2一维DP更新过程五、完全背包的变种与应用5.1变种问题5.2应用场景六、时间复杂度与优化6.1时间复杂度6.2优化技巧七、完全背包与0/1背包的核心区别总结完全
- 背包DP之树形背包(有依赖的背包)
GG不是gg
数据结构与算法分析#算法分析与设计动态规划
背包DP之树形背包-有依赖的背包一、树形背包基础认知1.1问题定义1.2核心特征二、树形背包的状态设计与递推2.1状态定义2.2递推关系2.3树的遍历顺序三、代码实现3.1数据结构定义3.2代码解析四、实例推演(以示例为例)4.1树结构4.2后序遍历处理五、时间复杂度与优化5.1时间复杂度5.2优化技巧六、树形背包的变种与应用6.1变种问题6.2应用场景背包问题中,0/1背包、完全背包等基础模型假
- DP学习笔记(8):完全背包求方案数,01背包求具体方案
完全背包求方案数常规分析在上一篇我们学习了01背包求方案数,今天我们学习完全背包求方案数。首先我们要区分一下01背包和完全背包的区别,01背包中的物品只有一个只有选或不选,完全背包中的物品有无限件实际有m/w[i]件,可以多选。我们在学习01背包求方案数时,要将j倒序来避免多选问题,在完全背包上我们需要多选,所以将j改为正序循环就可以满足我们的需求核心的状态和状态转移方程都是一样的状态:dp[j]
- 动态规划、背包问题入门
2303_Alpha
动态规划代理模式算法笔记c语言
目录1、动态规划定义2、数塔问题题目描述:思路:代码实现:3、最长有序子序列问题描述:代码实现:动态规划基本思想特点4、背包问题①01背包问题空间复杂度优化②完全背包③多重背包二进制优化④二维费用背包1、动态规划定义动态规划是一种用于解决优化问题的算法策略,它的核心是把一个复杂的问题分解为一系列相互关联的子问题,并通过求解子问题的最优解来构建原问题的最优解。它将一个问题分解为若干个子问题,然后从最
- MYOJ_5078:(洛谷P5662)[CSP-J2019] 纪念品(完全背包提高)
Jayfeather松鸦羽_sch
NOIP+CSP系列题解背包DP(不同于动规)算法动态规划c++
题目描述小伟突然获得一种超能力,他知道未来T天N种纪念品每天的价格。某个纪念品的价格是指购买一个该纪念品所需的金币数量,以及卖出一个该纪念品换回的金币数量。每天,小伟可以进行以下两种交易无限次:任选一个纪念品,若手上有足够金币,以当日价格购买该纪念品;卖出持有的任意一个纪念品,以当日价格换回金币。每天卖出纪念品换回的金币可以立即用于购买纪念品,当日购买的纪念品也可以当日卖出换回金币。当然,一直持有
- 动态规划之01背包与完全背包 (简单易懂)
zmuy
动态规划动态规划算法c语言
一、01背包01背包是在N件物品取出若干件放在空间为M的背包里,使得所装物品价值最大。每件物品的体积为W[1],W[2]~W[N],与之相对应的价值为V[1],V[2]~V[N]。同时还需要M个背包F[1],f[2]~f[M],空间依次为1,2~M,其值表示相应空间的背包当前所装物品的最大价值。(后面会解释为何需要M个背包)01背包是背包问题中最简单的问题。01背包的约束条件是给定几种物品,每种物
- 算法第37天| 完全背包\518. 零钱兑换 II\377. 组合总和 Ⅳ\57. 爬楼梯
烨然若神人~
算法算法
完全背包完全背包和01背包的区别纯完全背包,遍历背包和物品的顺序是可以对调的,只要求得出最大价值,不要求凑成总和的元素的顺序;01背包,遍历背包和物品的顺序是不可以对调的(一维不行,二维是可以的);一维解法中遍历顺序主要就是用来保证物品不被重复使用的,而完全背包中物品本身就是可以重复使用的,所以就无所谓了。完全背包题目思路与解法#include#includeusingnamespacestd;i
- 代码随想录算法训练营第38天 | 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结
ohnoooo9
代码随想录算法训练营打卡算法
322.零钱兑换如果求组合数就是外层for循环遍历物品,内层for遍历背包。如果求排列数就是外层for遍历背包,内层for循环遍历物品。钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?|LeetCode:322.零钱兑换_哔哩哔哩_bilibili代码随想录classSolution{publicintcoinChange(int[]
- 代码随想录算法训练营第三十八天 | 322.零钱兑换 279.完全平方数 139.单词拆分
m0_50413530
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)文章讲解:代码随想录视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?|LeetCode:322.零钱兑换_哔哩哔哩_bilibili思路:输入:coins=[1,2,5],amount=11输出:3解释:11=5+5+11.确定dp数组以及下标的含义dp[j]:凑足总额为j所需钱币的最少个数为dp[j]2.确定递推公式
- 代码随想录训练营Day33:完全背包问题2
mooc666quq
代码随想录训练营打卡算法leetcodeC++学习动态规划
1.322零钱兑换与昨天的零钱兑换问题的区别主要不同点在于dp数组的含义,相同点都是属于组合问题。1.dp数组的含义:dp[j]:代表容量为j时候的最少零钱个数2.递推公式:dp[j]=min(dp[j],dp[j-coins[i]]+1);dp[j-coins[i]]+1=dp[j-weight[i]]+value[i],所以还是属于一个变式。因为题目要求的是最小个数,所以得取min函数。3.初
- 深入理解背包问题:从理论到实践
a.原味瓜子
C++算法人工智能
目录一、什么是背包问题?基本概念二、背包问题的常见类型1.0-1背包问题2.完全背包问题3.多重背包问题4.分数背包问题三、0-1背包问题的动态规划解法1.基本思路2.C++实现代码3.空间优化版本四、完全背包问题的解法1.基本思路2.C++实现代码五、背包问题的实际应用六、经典例题与解答例题1:分割等和子集(LeetCode416)例题2:目标和(LeetCode494)七、背包问题的优化技巧八
- 混合背包(01,多重,完全)
YouQian772
动态规划算法
题目描述有N种物品和一个容量是V的背包。物品一共有三类:第一类物品只能用1次(01背包);第二类物品可以用无限次(完全背包);第三类物品最多只能用si次(多重背包);每种体积是vi,价值是wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行三个整数vi,wi,si,用空格隔
- 代码随想录60期day41
qq_19555169
算法leetcode职场和发展
完全背包#include#includeintmain(){intn,bagWeight;intw,v;cin>>n>>bagWeight;vectorweight(n);vectorvalue(n);for(inti=0;i>weight[i]>>value[i];}vector>dp(n,vector(bagWeight+1,0));for(intj=weight[0];j&coins){in
- 动态规划3—01背包梳理
Le_ee
算法c++动态规划
一:问题解析有一个容量为W的背包,总共有N个物品,每个物品有两个属性,重量w[i[和价值v[i],需要选择一些物品放入背包,每个物品只能选择一次,使得在不超过背包容量的情况下,物品的总价值最大;与完全背包的不同:每个物品只能选择一次;二:二维dp数组实现思路:1.定义二维数组dp[i][j]:i表示在前i个物品中选择,j表示此时背包的容量为j,dp[i][j]表示此状态下,背包能获得的最大价值;2
- 【自用】0-1背包问题与完全背包问题的Java实现
旧故新长
代理模式
引言背包问题是计算机科学领域的一个经典优化问题,分为多种类型,其中最常见的是0-1背包问题和完全背包问题。这两种问题的核心在于如何在有限的空间内最大化收益,但它们之间存在一些关键的区别:0-1背包问题允许每个物品只能选择一次,而完全背包问题则允许无限次选取同一物品。本篇博客将分别介绍这两个问题的动态规划解法,并附带相应的Java代码实现。0-1背包问题问题描述假设你有一个背包,其最大承重能力为W千
- 自学动态规划——爬楼梯(加强版)
临沂堇
动态规划算法
爬楼梯(加强版)57.爬楼梯(第八期模拟笔试)(kamacoder.com)虽然看起来和完全背包没有什么关系,实际上还是有背包的影子的。首先,题目要求方法数量,那么就应该想到递推公式:dp[i]+=dp[i-w[i]],对比一下下面的公式,是不是也是这样呢?我们将能走的步数(1~m)当做物品和体积,将总阶梯数当做最大背包容量,构建成一个完全背包寻找方法的模型。显然,112和121是两种不同的方法,
- 常见dp问题的状态表示
BUG召唤师
动态规划算法
目录前言一、动态规划核心五步二、常见dp问题的状态表示1.斐波那契数列模型2.路径问题3.简单多状态dp问题4.子数组问题5.子串问题6.子序列问题7.回文串问题8.两个数组的dp问题9.01背包问题10.完全背包问题11.二维费用01背包问题12.排列问题总结前言解决dp问题的关键首先是确定状态表示,确定正确的状态表示,才能结合题目要求顺利推导出状态转移方程。但状态表示往往是根据经验定义的,下面
- 代码随想录算法训练营 Day35 动态规划Ⅲ 0-1背包问题
JK0x07
算法动态规划
动态规划背包问题(0-1背包问题)0-1背包:n个物品,每个物品只有一个完全背包:n种物品,每个物品有无限个多重背包:n种物品,每个物品个数不相同暴力解法场景题目类型给出表格,背包最大容量n,说怎么装利益最大化重量价值物品0115物品1320物品2430暴力解法就是穷举(回溯)当装满了背包统计价值再试试其他的,这样穷举所有可能情况,得出最佳结论动态规划思路Dp数组定义Dp说明dp[i][j]在[0
- 代码随想录算法训练营 Day38 动态规划Ⅵ 完全背包应用 多重背包
JK0x07
算法动态规划
动态规划组合与排列DP求组合数是外层遍历物品,内层遍历背包DP求排列数是外层遍历背包,内层遍历物品多重背包多重体现在多个0-1背包,一个物品是有限个的背包问题有N种物品和一个容量为V的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci,价值是Wi。求解将哪些物品装入背包可使这些物品的耗费的空间总和不超过背包容量,且价值总和最大。多重背包和01背包是非常像的,为什么和01背包像呢?每件物品最多有
- 【蓝桥杯】01背包 完全背包 多重背包 模板及优化
遥感小萌新
蓝桥杯蓝桥杯算法职场和发展
01背包N,V=map(int,input().split())w=[0]*(N+1)#体积c=[0]*(N+1)#价格dp=[[0]*(V+1)foriinrange(N+1)]#dp[i][j]前i个物品空间j下最大价值foriinrange(1,N+1):w[i],c[i]=map(int,input().split())foriinrange(1,N+1):forjinrange(1,V+
- 代码随想录算法训练营第三十二天
写个博客
代码随想录打卡算法
LeetCode/卡码网题目:518.零钱兑换II377.组合总和Ⅳ790.多米诺和托米诺平铺(每日一题)57.爬楼梯(第八期模拟笔试)其他:今日总结往期打卡背包问题特点:滚动数组背包遍历顺序完全背包从小到大,即基于当前物品更新过的继续更新01背包从大到小,即基于上一物品更新物品内外层循环:求组合数外层for循环遍历物品,内层for遍历背包。(物品顺序固定,所以不会出现不同的排列)求排列数外层fo
- 动态规划(详解)
翻身的咸鱼ing
算法动态规划数据结构算法
动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。背包问题:01背包问题,完全背包问题,分组背包问题,二维背包等动态规划的一般解题步骤:明确「状态」->定义dp数组/函数的含义->明确「选择」->明确basecase。以Leetcode322为例先确定「状态」,也就是原问题和子问题中变化的变量。由于硬币数量无限,所以唯一的状态就是目标金额amount。然后确定dp函数的定义:当前的目标
- 【动态规划】背包问题(01背包,完全背包,多重背包,分组背包)
triticale
算法动态规划算法
01背包有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是viv_ivi,价值是wiw_iwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数viv_ivi,wiw_iwi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一个整数
- 动态规划算法:完全背包类问题
庐阳寒月
数据结构与算法算法动态规划数据结构C++
前言现在我们考虑下面的问题:(1)小明有一个背包,背包容积为v,有m种物品,其中第i种物品的价值为val[i],体积为t[i],每样物品有无限个,请问背包内物品总价值最大为多少?(2)小明有若干面值的硬币nums,小明需要买一个物品需要m元,小明想知道自己的硬币能否刚好凑够m元,如果可以,那么需要的最少硬币数量是多少?假设每种面值的硬币数量不做限制。分析这些问题我们发现,后两个问题仅需要一个结果,
- CCF CSP 第37次(2025.03)(2_机器人饲养指南_C++)
Dream it possible!
CCFCSP认证c++CCFCSPCSP
CCFCSP第37次(2025.03)(2_机器人饲养指南_C++)解题思路:思路一(完全背包):代码实现代码实现(思路一(完全背包)):时间限制:1.0秒空间限制:512MiB原题链接解题思路:思路一(完全背包):1、解题步骤拆分:①数据输入:第一行输入nm(int)。第二行输入m个整数A1,A2,…,Am代表一天内投喂不同苹果数的收益。②数据处理:通过分析此次题目是一个完全背包问题:每天投喂苹
- 完全背包问题DP详解
Nminem
算法背包问题dp
有N种物品和一个容量是V的背包,每种物品都有无限件可用。第i种物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行两个整数vi,wi用空格隔开,分别表示第i种物品的体积和价值。输出格式输出一个整数,表示最大价值。数据范围:0、f[i-1][j-v
- 代码随想录训练营day37|52. 携带研究材料,518.零钱兑换II,377. 组合总和 Ⅳ,70. 爬楼梯
wwwgxd
算法c++动态规划
52.携带研究材料这是一个完全背包问题,就是每个物品可以无限放。在一维滚动数组的时候规定了遍历顺序是要从后往前的,就是因为不能多次放物体。所以这里能多次放物体只需要把遍历顺序改改就好了#include#includeusingnamespacestd;intmain(){intn,m;cin>>n>>m;std::vectorweight(n);std::vectorvalue(n);for(in
- 动态规划分享之 —— 买卖股票的最佳时机
他们都不看好你,偏偏你最不争气
动态规划算法c++
我今天分享的是关于动态规划中最有名的一组题目——股票买卖问题。为什么选它?因为它覆盖了大部分DP的建模套路,同时题意又很好理解,非常适合入门。DP类型简要说明典型例子1.线性DP当前状态只与前一两个状态有关斐波那契数列、爬楼梯、打家劫舍2.区间DP处理“区间”上问题括号匹配、石子合并3.背包DP决策是否选某个物品01背包、完全背包、多重背包4.树形DP在树结构上处理最优解树的直径、选点问题5.状压
- leetcode 279. Perfect Squares
洞阳
leetcodeleetcode算法完全背包问题动态规划
本题也是完全背包问题。并且本质上与第322题一模一样。要求的是装满背包最少需要多少个物品。与第322题一样,dp数组的初始化需要仔细考虑。详见leetcode322.CoinChange本题,给定整数n就相当于给定容量大小为n的背包。n只可能等于,1,4,9,...,这些完全平方数的和。相当于物品个数就是,物品重量是1,4,9,...,。第一版代码外层循环遍历物品,内层循环遍历背包容量。class
- 动态规划 (Dynamic Programming)
nuo534202
学习笔记动态规划算法c++
文章目录背包DP01背包完全背包多重背包混合背包背包DP01背包1.洛谷P2871[USACO07DEC]CharmBraceletS题目链接:洛谷P287101背包模板题,不过多解释。#includeusingnamespacestd;constexprintN=3500,M=13000;intn,m,w[N],d[N],dp[M];intmain(){ios::sync_with_stdio(
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR