- 基于RSS与KNN的室内定位技术实现
火箭统
本文还有配套的精品资源,点击获取简介:室内定位技术对于智能建筑和物联网至关重要,在没有GPS信号的环境中尤其重要。RSS位置指纹法利用特定位置的无线信号强度来确定设备位置,而KNN算法能够基于信号强度找到最近的已知位置进行预测。本教程详细讲解了如何在MATLAB中通过”positioning_simulation.m”代码实现RSS位置指纹法与KNN算法的结合,涵盖数据预处理、算法实现、位置预测、
- Halcon试用与许可指南:2022年7月版
我就是夏迎春
本文还有配套的精品资源,点击获取简介:本文件提供了Halcon软件的试用证书和许可证相关资料的集合,为潜在用户提供免费体验Halcon各项功能的途径,包括图像处理、形状匹配、OCR和条形码读取等。用户可以通过试用版全面了解软件功能,评估是否符合项目需求,并指导如何正确管理和优化许可证使用,以符合预算和需求。1.Halcon软件概述在当今高度自动化的工业时代,机器视觉系统发挥着至关重要的作用。Hal
- halcon知识:常见三种模板匹配方法总结
无水先生
Halcon高级应用Halcon中级实践计算机视觉图像处理
目录一、形状匹配模板(Shape_Based)1.1形状匹配常见的有四种情况1.2四种匹配的特点1.3一般形状匹配模板shape_model1.4线性变形匹配模板planar_deformable_model1.5局部变形模板1.6比例缩放末班匹配二、灰度匹配模板(Gray-Value-Based)2.1创建模板方法如下2.2匹配搜索操作2.3模板调整操作三、组合模板匹配(Component-Ba
- 数据挖掘算法:KNN、SVM、决策树详解
大力出奇迹985
数据挖掘算法支持向量机
本文将详细解析数据挖掘领域中常用的三种经典算法:KNN(K近邻算法)、SVM(支持向量机)和决策树。首先分别阐述每种算法的核心原理、实现步骤,再分析它们的优缺点及适用场景,最后对这三种算法进行综合对比与总结。通过本文,读者能全面了解这三种算法的特性,为实际数据挖掘任务中算法的选择提供参考,助力提升数据处理与分析的效率和准确性。在当今信息爆炸的时代,数据挖掘技术在各行各业发挥着至关重要的作用,而算法
- R拟合 | 一个分布能看到三个峰,怎么拟合出这三个正态分布的参数? | 高斯混合模型 与 EM算法
biomooc
R数学与统计r语言
1.效果已知数据符合上图分布,怎么求下图的三个分布的参数mu,sigma,及每个分布的权重lambda?2.代码:高斯混合模型(GaussianMixtureModel,简称GMM)library(mixtools)set.seed(123)#确保结果可重复#假设x是你的观测数据xsummary(mix)summaryofnormalmixEMobject:comp1comp2comp3lambd
- C#与halcon联合(3)文本写入可以改变字体大小类型及绘画直线图形十字叉箭头轮廓
这里写目录标题1.操作demo2.绘画直线及显示①在halcon中的操作代码如下②转换成C#代码并将其封装成函数如下3.绘画圆形及显示其轮廓(XLD)①在halcon中的操作代码如下②转换成C#代码并将其封装成函数如下4.绘画普通矩形及轮廓显示(XLD)①在halcon中的操作代码如下②转换成C#代码并将其封装成函数如下5.绘画角度可调矩形及其轮廓显示(XLD)①在halcon中的操作代码如下②转
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- halcon机器视觉算法原理与编程实战pdf_福利 | 免费送5本机器视觉Halcon的经典书籍...
weixin_39609650
halcon深度学习
随着机器视觉技术的飞速发展,大量需要使用机器视觉代替人工检测的需求应运而生。Halcon在开发机器视觉项目中表现出的高效性和稳定性,使其应用范围非常广泛。本书将针对机器视觉的原理和算法,以及如何应用算法解决问题进行探讨和说明,并利用Halcon对各种机器视觉算法进行举例,让读者全面、深入、透彻地理解Halcon机器视觉开发过程中的各种常用算法的原理及其应用方法,提高实际开发水平和项目实战能力同时给
- 机器视觉Halcon
介绍Halcon是由德国MVTecSoftwareGmbH公司开发的一款机器视觉软件,广泛应用于工业检测、医学成像、机器人引导、三维视觉等领域。它提供强大的图像处理和分析功能,支持快速开发高效的机器视觉应用。_____________________________________________________________________________Halcon主要特点1.强大的图像处理
- 深入详解K近邻算法(KNN):基本概念、原理及在医学影像领域的应用与实现
猿享天开
近邻算法算法医学影像人工智能机器学习大模型
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- yolov8seg如何获取每个结果的mask,不是一整个的mask
boss-dog
视觉算法开发yolov8rk3588
使用rk3588开发板对yolov8-seg进行推理时,瑞芯微官方代码中对推理的结果进行了封装,返回的分割结果是所有目标的mask,而不是单个目标的mask。yolov8seg怎么获得每个结果的mask,不是一整个的mask:https://github.com/airockchip/rknn_model_zoo/issues/175解决postprocess.h中关于检测结果的结构体解析type
- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- 《机器学习实战》笔记(03):决策树
巨輪
机器学习机器学习决策树
决策树kNN算法可以完成很多分类任务,但是它最大的缺点就是给出数据的内在含义,决策树的主要优势就在于数据形式非常容易理解决策树的构造优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。创建分支的伪代码函数createBranch()Checkifeveryiteminthedatasetisinthesa
- 用KNN算法入门机器学习:原理、实战与代码详解
TJDG567
算法机器学习人工智能k近邻算法
引言K最近邻(K-NearestNeighbors,KNN)是机器学习中最简单且直观的算法之一,非常适合分类和回归任务。它的核心思想是“物以类聚”,即相似的数据点在特征空间中通常属于同一类别。本文将深入浅出地讲解KNN的原理、优缺点、应用场景,并通过Python代码实战演示如何实现一个完整的KNN分类任务。1.KNN算法原理1.1算法概述KNN是一种**惰性学习(LazyLearning)**算法
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 机器学习篇-KNN算法实现鸢尾花模型和手写数字识别模型
一.KNN简介KNN思想K-近邻算法(KNearestNeighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别KNN算法思想:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别K值根据网格和交叉验证来确定样本相似性:样本都是属于一个任务数据集的。样本距离越近则越相似。利用K近邻算法预测电影类型K值的选择KNN的应用方式解决问题:分类问题、回归问
- 机器学习之KNN算法:鸢尾花案例
进阶到入土
机器学习算法人工智能
一、KNN算法(又称近邻算法)核心思想:若一个样本在特征空间中有k个相似的样本且其中大多数同属于某一类别,那么这个样本也属于该类别。大白话版:我在什么地方,问我附近邻居二、相似性的判断那么如何判断哪些算是近邻?我们采用距离指标来进行衡量。常见的距离指标有:欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离。其中欧氏距离最为常用。①欧氏距离欧氏距离就是指两点空间上的距离,该方法的公式相信很多人都比较
- 【基于C# + HALCON的工业视系统开发实战】三十三、汽车电子连接器精密质检实战:基于.NET 6 + HALCON的亚像素测量与多工位协同方案
AI_DL_CODE
机器视觉:C#+HALCONc#halcon机器视觉亚像素测量多工位协同汽车连接器ModbusTCP
摘要:汽车电子连接器作为车辆电路连接的核心部件,其质量直接影响整车电气性能与安全性。本文基于.NET6与HALCON24.11构建汽车电子连接器视觉检测系统,针对端子位置精度(±0.02mm)、插针共面度(≤0.05mm)、胶芯完整性(≥0.1mm缺陷检出)、锁扣机构功能验证四大核心需求,设计多工位协同检测架构。系统采用HALCON亚像素边缘检测技术实现端子高精度测量,结合激光三角法完成插针共面度
- 机器学习(一)KNN,K近邻算法(K-Nearest Neighbors)
星期天要睡觉
机器学习近邻算法人工智能
建议初学者掌握KNN作为理解其他复杂算法(如SVM、决策树、神经网络)的基石。K近邻算法(K-NearestNeighbors,KNN)详解:原理、实践与优化K近邻算法(K-NearestNeighboKrs,简称KNN)是一种经典、直观且易于实现的监督学习方法,既可用于分类,也可用于回归。它“懒惰”地存储所有训练样本,直到有新样本需要预测时才临时计算,因此也被称为“懒惰学习算法”。本文将系统介绍
- 机器学习之K-近邻算法
paid槮
机器学习近邻算法人工智能
什么是K-近邻算法K-近邻算法(KNN)概念KNearestNeighbor算法⼜叫KNN算法,这个算法是机器学习⾥⾯⼀个⽐较经典的算法,总体来说KNN算法是相对⽐较容易理解的算法定义如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的⼤多数属于某⼀个类别,则该样本也属于这个类别。来源:KNN算法最早是由Cover和Hart提出的⼀种分类算法距离公式两个样本的距离可以通过如下公式计
- 机器学习基础-k 近邻算法(从辨别水果开始)
耐思nice~
机器学习由浅入深-吴恩达机器学习近邻算法人工智能
一、生活中的"分类难题"与k近邻的灵感你有没有这样的经历:在超市看到一种从没见过的水果,表皮黄黄的,拳头大小,形状圆滚滚。正当你犹豫要不要买时,突然想起外婆家的橘子好像就是这个样子——黄色、圆形、大小和拳头差不多。于是你推断:"这应该是橘子吧!"其实,这个看似平常的判断过程,竟然藏着机器学习中最经典的分类算法——k近邻(k-NearestNeighbors,简称kNN)的核心思想!1.1现实中的解
- rk3588 rknntoolkit模型转换及部署
Godlovesea
python
cankao参考实时视频取流GNOME桌面—NeardiLinux用户手册v1.1.2documentationhttp://wiki.neardi.com/wiki/linux_guide/zh_CN/docs/demo/demo_gnome.htmlRK3588部署rknntoolkit2进行模型转换_xingman510的博客-CSDN博客以yolov5篇---yolov5训练pt模型并转换
- halcon手眼标定z方向实操矫正
Tianwen_Burning
halcon3d技法及心得计算机视觉halcon
1,对于眼随手动的标定模型。标定结束后,可以获得ToolInCamPosePre——标定好的机器人工具坐标系与相机坐标系的刚性变换关系2,此时可以通过halcon提供的方法,进行二次的z方向矫正。具体方法:1)先用相机拍一张标定版的照片image。并获取拍照时工业机器人的工具坐标系ToolInBasePoseRef12)将工业机器人末端移动到标定板的00点中心位置。获取此时工业机器人的工具坐标系T
- 【C# + HALCON 机器视觉】机器视觉在变速箱齿轮齿形精度检测中的实战应用
AI_DL_CODE
机器视觉:C#+HALCONc#halcon机器视觉计算机视觉变速箱齿轮检测齿形精度检测傅里叶变换
摘要:本文聚焦C#与HALCON在变速箱齿轮齿形精度检测的实战应用,阐述基于傅里叶变换分析齿形轮廓、深度学习分类器判断硬度标记完整性的HALCON技术,以及C#集成多相机同步采集系统实现齿轮360°全检的开发过程。详细展示从环境搭建、硬件配置、图像采集处理,到齿形分析、标记检测、系统集成的实操流程,并提供完整代码。实际案例表明,该系统使检测周期缩短至3秒/件,精度达±5μm。同时分析高精度算法、系
- JAVA实现KNN分类
xiaojimanman
javaKNN分类算法java
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/51064307http://www.llwjy.com/blogdetail/f74b497c2ad6261b0ea651454b97a390.html个人博客站已经上线了,网址www.llwjy.com~欢迎各位吐槽~-------------------------------
- lucene 9.10向量检索基本用法
成长的小牛233
lucene全文检索
Lucene9.10中的KnnFloatVectorQuery是用来执行最近邻(k-NearestNeighbors,kNN)搜索的查询类,它可以在一个字段中搜索与目标向量最相似的k个向量。以下是KnnFloatVectorQuery的基本用法和代码示例。1.索引向量字段首先,你需要一个包含向量字段的索引。你可以使用KnnFloatVectorField来添加向量到文档中。importorg.ap
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- 3.17 补题(字符串,模拟)
ZZZS0516
算法c++
目录E-书法(字符串操作,移动指针)题目描述思路分析代码实现G-女神节的魔法花园(思维)题目描述思路分析代码实现H-KNN算法(模拟,排序)题目描述思路分析代码实现E-书法(字符串操作,移动指针)链接:书法来源:2025常熟理工学院天梯选拔赛题目描述在计算机上打字就是赛博书法,键盘如同笔,输入框就像纸,在键盘上输入一个个指令,就可以在输入框中写下自己想写的文字。现在你需要体验一次计算机的生活,目前
- Go-Redis × 向量检索实战用 HNSW 在 Redis 中索引与查询文本 Embedding(Hash & JSON 双版本)
Hello.Reader
数据库运维缓存技术golangredisembedding
1.场景与思路痛点:把“文本内容”转成向量后,如何在本地Redis里做近似向量搜索(KNN),而不依赖外部向量数据库?方案:利用HuggingFace模型sentence-transformers/all-MiniLM-L6-v2生成384维Float32向量;借助RediSearch的HNSW索引能力,在Hash或JSON文档里存储&查询向量;用go-redisv9的高阶API(FTCreate
- 【C# + HALCON 机器视觉】构建通用视觉软件平台:跨行业应用实战
AI_DL_CODE
机器视觉:C#+HALCONc#HALCON机器视觉通用软件平台二维码识别模板匹配OCR
摘要:本文深入探讨基于C#与HALCON开发通用视觉软件平台的技术路径与实践方法,围绕二维码识别、OCR、模板匹配等核心功能,结合模块化设计理念,详细阐述相机参数设置、图像处理、通信模块等技术实现。通过与爱普生机器人配合的定位标定案例,以及印刷品缺陷检测、包装日期识别等应用场景,展示该平台在跨行业领域的应用价值,同时提供完整实操流程与代码示例,助力开发者快速搭建高效、低成本的机器视觉解决方案。文章
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod