算法学习之Fibonacci Numbers生成算法分析

Fibonacci Numbers(点击打开链接)

    0,1,1,2,3,4,8,13,21,34,...

Program 1 (iterative algorithm):

unsigned int Fibonacci(unsigned int n)
{
    int previous = -1;
    int result = 1;
    for (unsigned int i = 0; i <= n; ++i)
    {
	int const sum = previous + result;
        previous = result;
	result = sum;
    }
    return result;
}

该程序是根据定义,使用iterative algorithm实现的,通过前两项相加产生新的项。对于初始值的设定(previous = -1;    result = 1),可以同分析Fibonacci数列的前3项,进行反向推导即可。(result + 0 = 1 --> result = 1)    (previous + result = 0  ---> previous = -1)

使用Asymptotic analysis可知,该程序的big Oh表达式为: O(n)


Program 2 (recursive algorithm):

unsigned int Fibonacci(unsigned int n)
{
    if (n == 0 || n == 1)
	return n;
    else
	return Fibonacci(n-1) + Fibonacci(n-2);
}
这个是递归算法,它是呈指数增长的,参考 点击打开链接


你可能感兴趣的:(算法学习之Fibonacci Numbers生成算法分析)