- 零数学基础理解AI核心概念:梯度下降可视化实战
九章云极AladdinEdu
人工智能gpu算力深度学习pytorchpython语言模型opencv
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。用Python动画演示损失函数优化过程,数学公式具象化读者收获:直观理解模型训练本质,破除"数学恐惧症"当盲人登山者摸索下山路径时,他本能地运用了梯度下降算法。本文将用动态可视化技术,让你像感受重力一样理解AI训练的核心原理——无需任何数学公式推导。一、梯度下降:AI世界的"万有
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- 【树模型与集成学习】(task6)梯度提升树GBDT+LR
山顶夕景
推荐算法#集成学习与KaggleGBDT推荐算法机器学习
学习总结(1)不同问题的提升树学习算法,主要区别在于使用的损失函数不同,如用平方误差损失函数的回归问题、用指数损失函数的分类问题、用一般损失函数的一般决策问题等。(2)不管是二分类问题的提升树,还是回归问题的提升树,这里的损失函数都很方便:前者是用指数损失函数,所以可以当做是Adaboost的个例,Aadaboost的流程;而后者是当使用平方误差损失时,可以直接拟合残差。而使用不同的损失函数,对应
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- YOLOV8模型及损失函数
山居秋暝LS
计算机视觉PythonYOLO
YOLOV8代码分析1.YOLOV8相对于YOLOV5的改进2模型2.1模型主要模块2.1.1模型主要模块:2.1.2CBS、SPPF、Bottleneck、C2f、model3损失ultralytics/models/yolo/detect/train.py3.2.1生成anchor_points3.3.1把targets[9,6]变为[bs,max_gt,1+4]3.4获取预测框Pboxes3
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- 交叉熵损失函数
onlyzzr
深度学习pytorch深度学习机器学习
importtorchimporttorch.nn.functionalasFimporttorch.nnasnnimportmathdefcross_entropyloss(y_pred,y_true):#y_pred'sshapeis[N,C]y_pred=torch.log_softmax(y_pred,dim=-1)loss=-torch.sum(y_true*y_pred,dim=-1)
- 机器学习算法(六)---逻辑回归
向云端UP
机器学习模型机器学习算法逻辑回归
目录一、逻辑回归1.1模型介绍1.2工作原理1.2.1对数几率模型1.2.2逻辑回归与Sigmoid函数1.3.3熵、相对熵与交叉熵1.3损失函数和优化算法1.3.1损失函数的理论基础1.3.2优化算法1.3.2.1梯度下降算法局限1.3.2.2随机梯度下降与小批量梯度下降1.4算法流程1.5逻辑回归优缺点1.6案例1.7classification_report()参数二、逻辑回归与线性回归的区
- 实验七 SVM支持向量机
萍萍无奇a
支持向量机机器学习人工智能
目录一、SVM定义二、SVM基本概念及其优缺点1、间隔2、SVM核心3、支持向量4、支持向量机的基本思想5、优缺点三、损失函数四、代码实现1、算法实现基本流程2、代码解析3、整体代码五、结果截图及解释1、结果截图2、结果解释六、实验总结一、SVM定义支持向量机(SupportVectorMachine,SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是通过在特征空间中找到一
- Pytorch 自定义损失函数
DeniuHe
Pytorch
自定义HingeLossclassMyHingeLoss(torch.nn.Module):#不要忘记继承Moduledef__init__(self):super(MyHingeLoss,self).__init__()defforward(self,output,target):"""output和target都是1-D张量,换句话说,每个样例的返回是一个标量."""hinge_loss=1-
- 深度学习 - 梯度下降优化方法
梯度下降的基本概念梯度下降(GradientDescent)是一种用于优化机器学习模型参数的算法,其目的是最小化损失函数,从而提高模型的预测精度。梯度下降的核心思想是通过迭代地调整参数,沿着损失函数下降的方向前进,最终找到最优解。生活中的背景例子:寻找山谷的最低点想象你站在一个山谷中,眼睛被蒙住,只能用脚感受地面的坡度来找到山谷的最低点(即损失函数的最小值)。你每一步都想朝着坡度下降最快的方向走,
- 深度学习-梯度下降法
若天明
深度学习深度学习人工智能
梯度下降法优化器核心目标:找到函数的最小值点(或极小值点)。在机器学习中,这个函数通常是损失函数,衡量模型预测值与真实值的差距。最小化损失函数意味着让模型预测更准确。核心思想:想象你站在一个山坡上(函数曲面),目标是尽快下到山谷最低点(最小值点)。你不知道最低点的具体位置,但你能感受到脚下山坡的最陡峭下降方向(梯度方向)。沿着这个方向走一步(更新参数),然后重新感受方向,再走一步...如此反复,直
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 基础NLP | 01 机器学习 深度学习基础介绍
是娜个二叉树!
NLP自然语言处理机器学习深度学习
文章目录机器学习简介有监督学习无监督学习一般流程常用概念深度学习简介隐含层/中间层例子and流程如果想要猜测的又快又准,调整的方向有哪些?随机初始化损失函数导数与梯度梯度下降优化器MiniBatchepoch流程深度学习的基本思想机器学习简介有监督学习核心目标:建立一个模型(函数),来描述输入(X)和输出(Y)之间的映射关系价值:对于新的输入,通过模型给出预测的输出要点:有一定数量的训练样本输入和
- PPO流程的个人疑问集锦 Q & A
文中大部分为GPT生成,并由我个人理解后添加了注解。1.PPOLoss和ActorLoss是一个东西吗?个人理解:上图中:PPO-clipLoss指的是用了clip的Actorloss(含kl散度罚项),用来鼓励actor模型在不过度偏离ref模型以及oldactor模型的前提下,对齐人类偏好;LMLoss指的是(交叉)熵损失函数,用来促进actor生成更多样的输出;MSELoss指的是criti
- 使用PyTorch进行猫狗图像分类实战指南
op3721
本文还有配套的精品资源,点击获取简介:本文详细介绍了如何利用PyTorch框架来执行一个猫狗分类任务。从数据预处理、构建全连接网络模型、训练过程到评估指标等方面进行了全面阐释。内容涵盖了图像数据的收集、标准化处理,以及如何使用DataLoader类来提高数据加载效率。接着,本文讲解了如何构建和定义网络结构,选用交叉熵损失函数,并利用SGD或Adam优化器进行权重更新。在训练模型时,我们会进行多个e
- Class11数值稳定性
Morning的呀
深度学习深度学习人工智能pytorch
Class11数值稳定性一.神经网络的梯度计算假设你有一个输入,比如图像的像素、文本的词向量等等。然后神经网络中有多层神经元,每层做一次变换。其中h指的就是隐藏层第层的输出是:其中,是第层的激活函数或线性变换等网络的最终输出:这里的ℓ是损失函数,也就是每一层的损失函数作用于原始的X。加上损失函数,神经网络才有一个标准,指导什么是好的结果。损失函数衡量的是神经网络预测结果和真实标签之间的差距。作用是
- 阿里云天池-学习笔记(7.22)
2301_81822737
深度学习
概念的初步认识和学习一、损失函数损失函数是衡量模型预测值与真实值之间差异的一个量度,通过最小化这个差异来优化模型的参数。损失函数的选择直接影响到模型的训练效果和最终性能。二、one-hot编码one-hot编码使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候其中只有一位有效(即为1,其余为0)。具体来说,对于每个分类变量,都会为其分配一个唯一的二进制位,并使用该
- YOLO 目标检测的改进方法
YOLO目标检测的改进方法可以从模型架构、训练策略、损失函数等多个方面入手,以下是一些常见的改进方法方向及参考文献:模型架构改进骨干网络替换:使用更轻量或更强大的网络替换原始骨干网络。轻量级网络如MobileNetV3、ShuffleNetV2等适合移动端部署,可提高推理速度;高性能网络如ConvNeXt、SwinTransformer等能提取更丰富的语义特征,提升检测精度。还可添加CBAM、SE
- 回归损失函数2 : HUber loss,Log Cosh Loss,以及 Quantile Loss
均方误差(MeanSquareError,MSE)和平均绝对误差(MeanAbsoluteError,MAE)是回归中最常用的两个损失函数,但是其各有优缺点。为了避免MAE和MSE各自的优缺点,在FasterR-CNN和SSD中使用SmoothL1SmoothL1损失函数,当误差在[−1,1][−1,1]之间时,SmoothL1SmoothL1损失函数近似于MSE,能够快速的收敛;在其他的区间则近
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- KTO(Kahneman-Tversky Optimization)技术详解与工程实现
DK_Allen
大模型深度学习pytorch人工智能KTO
KTO(Kahneman-TverskyOptimization)技术详解与工程实现一、KTO核心思想KTO是基于行为经济学前景理论(ProspectTheory)的偏好优化方法,突破传统偏好学习需要成对数据的限制,仅需单样本绝对标注(好/坏)即可优化模型。其创新性在于:损失函数设计:将人类对"收益"和"损失"的非对称心理反应量化数据效率:无需构建偏好对(y_w>y_l),直接利用松散标注二、KT
- 语言模型 RLHF 实践指南(一):策略网络、价值网络与 PPO 损失函数
在使用ProximalPolicyOptimization(PPO)对语言模型进行强化学习微调(如RLHF)时,大家经常会问:策略网络的动作概率是怎么来的?价值网络的得分是如何计算的?奖励从哪里来?损失函数怎么构建?微调后的旧轨迹还能用吗?这篇文章将以语言模型强化学习微调为例,结合实际实现和数学公式,深入解析PPO的关键计算流程。1️⃣策略网络:如何计算动作概率?策略网络πθ(a∣s)\pi_\t
- 深度学习核心知识简介和模型调参
研术工坊
深度学习知识和技巧深度学习人工智能python
深度学习模型调优就像调制一道复杂的菜肴,需要掌握多种"调料"的用法。本文将为您详解这些关键"调料",帮助您烹饪出高性能的模型。###核心参数及其影响####1️⃣Loss(损失函数)**基本介绍**:衡量模型预测与真实值差距的指标,是模型优化的指南针。**生活类比**:想象你在教小孩认识动物:-**完美情况**:小孩看到猫说"猫",看到狗说"狗"→Loss=0-**有错误**:小孩看到猫说"狗"→
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla