- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- 代码随想录算法训练营第三十五天
01背包问题二维题目链接01背包问题二维题解importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){Scannersc=newScanner(System.in);intM=sc.nextInt();intN=sc.nextInt();int[]space=newint[M];int[]value=new
- 算法刷题-动态规划之背包问题
1.背包问题之01(4.30)题目描述小明有一个容量为VV的背包。这天他去商场购物,商场一共有NN件物品,第ii件物品的体积为wiwi,价值为vivi。小明想知道在购买的物品总体积不超过VV的情况下所能获得的最大价值为多少,请你帮他算算。输入描述输入第11行包含两个正整数N,VN,V,表示商场物品的数量和小明的背包容量。第2∼N+12∼N+1行包含22个正整数w,vw,v,表示物品的体积和价值。1
- 【春招笔试真题】饿了么2025.03.07-算法岗真题
春秋招笔试突围
最新互联网春秋招试题合集算法代理模式
第一题:数据特征最大化1️⃣:找出数组中的最大元素,返回其平方难度:简单这是一道技巧性题目,乍看需要枚举所有子数组计算异或和和最大公约数。但通过分析可以发现,对任意单元素子数组,其异或值和最大公约数都是元素本身,因此乘积是元素的平方。可以证明,最大元素的平方就是整个问题的最优解。时间复杂度O(n)。第二题:同质接龙字符串1️⃣:记忆化搜索+动态规划2️⃣:使用状态编码降低存储复杂度难度:中等这道题
- 【华为机试】121. 买卖股票的最佳时机
不爱熬夜的Coder
算法华为机试golang华为算法华为od深度优先数据结构
文章目录121.买卖股票的最佳时机描述示例1示例2示例3提示解题思路方法一:一次遍历(推荐)方法二:暴力解法方法三:动态规划方法四:分治法代码实现复杂度分析测试用例完整题解代码121.买卖股票的最佳时机描述给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大
- 120.三角形最小路径和
HamletSunS
题解:给出一个三角形,求从顶点到最底层的路径的最小和方法:动态规划2个参数,i,j,代表从(i,j)出发直到底层的最小路径和。f(i,j)=t[i][j]+min(f[i+1][j],f[i+1][j+1])优化方案:根据dp的方程可以发现,当前元素只与下一行的同列和右侧有关系,与左侧无关。那么优化思路就是只用1行,从左开始往右更新即可。这样就可以只用一维数组dp[j]代表从某行(通过不断更新可更
- Floyd算法详解——包括解题步骤与编程
HOLD ON!
算法
Floyd算法详解——包括解题步骤与编程SweeNeil展开一、Floyd算法原理Floyd算法是一个经典的动态规划算法,它又被称为插点法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。Floyd算法是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,算法目标是寻找从点i到点j的最短路径。从任意节点i到任意节点j的最短路径不外乎2种
- 动态规划 (Dynamic Programming) 算法概念-JS示例
香蕉可乐荷包蛋
#动态规划算法动态规划javascript
核心概念解析动态规划是一种用于解决具有重叠子问题和最优子结构特性的复杂问题的算法设计技术。它通过将复杂问题分解为更小的子问题,并存储子问题的解来避免重复计算,从而提高效率。关键特性最优子结构:问题的最优解包含子问题的最优解重叠子问题:在递归求解过程中,相同的子问题被多次计算无后效性:某个阶段的状态一旦确定,就不会受到后续决策的影响动态规划与分治法的区别分治法:子问题不重叠,各自独立求解动态规划:子
- 动态规划 (Dynamic Programming) 算法概念-Python示例
香蕉可乐荷包蛋
#动态规划算法动态规划python
Python实例详解1.斐波那契数列#传统递归方法-效率低下O(2^n)deffibonacci_recursive(n):ifn=weights[i-1]:dp[i][w]=max(dp[i][w],dp[i-1][w-weights[i-1]]+values[i-1])returndp[n][capacity]#空间优化版本defknapsack_optimized(weights,value
- 用动态规划方法求解0-1背包问题
逢着
算法动态规划算法c++
如果你对动态规划方法求解0-1背包问题的思路不清晰,直接阅读代码并不是一个好的建议。推荐一个B站up主的视频讲解:0/1背包问题-动态规划练习地址(B站视频配套的网址)#includeusingnamespacestd;constintbagVolume=6;//背包体积constintitemNumber=4;//准备放入的物品数量constintrows=itemNumber+1;//tabl
- 统计学07:概率论基础
夜雨声烦yyy
统计学概率论
一、基础概念概率p代表事件发生的可能性大小,在0-1范围内ab测试中的p值,就代表一种概率(在零假设成立的前提下,观察当前数据或者比当前数据更加极端的数据的概率,p值越小,意味着在零假设成立的情况下,观察到当前结果的概率越小)二、基本性质非负性:P(A)>=0规范性:整个样本空间发生的概率是1加法公式:两个事件A和B的概率之和是P(A∪B)=P(A)+P(B)−P(A∩B)(非互斥事件)P(A∪B
- 算法在前端框架中的集成
引言算法是前端开发中提升性能和用户体验的重要工具。随着Web应用复杂性的增加,现代前端框架如React、Vue和Angular提供了强大的工具集,使得将算法与框架特性(如状态管理、虚拟DOM和组件化)无缝集成成为可能。从排序算法优化列表渲染到动态规划提升复杂计算效率,算法的集成能够显著改善应用的响应速度和资源利用率。本文将探讨如何将常见算法(排序、搜索和动态规划)集成到前端框架中,重点介绍框架特性
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- 背包DP之树形背包(有依赖的背包)
GG不是gg
数据结构与算法分析#算法分析与设计动态规划
背包DP之树形背包-有依赖的背包一、树形背包基础认知1.1问题定义1.2核心特征二、树形背包的状态设计与递推2.1状态定义2.2递推关系2.3树的遍历顺序三、代码实现3.1数据结构定义3.2代码解析四、实例推演(以示例为例)4.1树结构4.2后序遍历处理五、时间复杂度与优化5.1时间复杂度5.2优化技巧六、树形背包的变种与应用6.1变种问题6.2应用场景背包问题中,0/1背包、完全背包等基础模型假
- 最长递增子序列(LIS)时间复杂度详解
高冷小伙
算法总结算法动态规划数据结构leetcode
问题描述所谓最长递增子序列,就是从一个数组中,从左至右选择若干个数,使得组成的新序列长度最长。解题思路1.转换成最长公共子序列问题待更新~~~~~2.普通动态规划(时间复杂度O(n^2))普通的动态规划思路就是先初始化len[i]为1,然后遍历下标为0~i-1的所有元素,从而对len[i]进行更新;代码如下:voidsolve2(intnum[],intl){intlen[100];memset(
- 动态规划:从入门到精通
本文全章节一共一万七千多字,详细介绍动态规划基础与进阶技巧,全篇以代码为主,认真读完理解,你对动态规划的理解一定会有一个质的飞跃。一、动态规划简介:动态规划(DynamicProgramming,简称DP)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。它的核心思想是:将复杂问题分解成子问题,保存子问题的解,避免重复计算。动态规划本质上是一种用空间换时间的算法思想:时间优化:避免
- 【动态规划】背包dp
算法阿诺
动态规划动态规划算法
青春没有售价,dp速学一下。参考文章01背包在01背包问题中,每个物品只能放一次进背包。dp[i][j]dp[i][j]dp[i][j]:第i个物品,j容量状态转移公式:f[i][j]=max(f[i−1][j],f[i−1][j−w[i]]+pri[i])f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+pri[i])f[i][j]=max(f[i−1][j],f[i−1
- 【每日一题】补档 CF1875 D. Jellyfish and Mex | 动态规划 | 中等
题目内容原题链接给定一个长度为nnn的数组aaa,每次选择一个元素aia_iai删除,删除的代价为删除后剩余元素的mexmexmex,mex(a)mex(a)mex(a)是指aaa中未出现过的最小的非负数。问将数组aaa删除为空的操作的最小代价。数据范围1≤n≤50001\leqn\leq50001≤n≤50000≤ai≤1090\leqa_i\leq10^90≤ai≤109题解考虑mex(a)m
- 20250725题解
关注我立刻回关
算法
首页排名提交记录题目列表测试比赛教师频道正版书籍关于1267:【例9.11】01背包问题时间限制:1000ms内存限制:65536KB提交数:71918通过数:43491【题目描述】一个旅行者有一个最多能装MM公斤的背包,现在有nn件物品,它们的重量分别是W1,W2,...,WnW1,W2,...,Wn,它们的价值分别为C1,C2,...,CnC1,C2,...,Cn,求旅行者能获得最大总价值。【
- 图书推荐-对初学者有好的算法书籍《Hello算法》
_abab
图书推荐算法
关于本书Hello算法本书是开源免费的数据结构与算法入门教程,采用动画图解和可运行代码示例讲解主要内容涵盖复杂度分析、数据结构(数组/链表/栈/队列/树/图等)、算法(搜索/排序/动态规划等)适合算法初学者建立知识体系,可作为刷题工具库如何使用本书推荐结合动画图解理解重点难点,所有代码提供Java等语言版本包含在线运行功能,可通过GitHub仓库获取源码,各章节设有讨论区学习路线分三阶段:建立基础
- 代码随想录算法训练营Day59 || 图论part 09
傲世尊
算法图论
dijkstra算法(堆优化版):利用小顶堆来减少一层for循环。因为要存储边的权值,邻接表里就需要存pair了。Bellman_ford算法精讲,卡玛网94题:变化在于权值出现了负数,用动态规划思想来维护MinDist数组。核心在于对所有边进行n-1次松弛处理,就可以得出起始点到所有节点的最短路径。图论章节主打一个走马观花属于是。
- 零基础数据结构与算法——第五章:高级算法-贪心算法-分数背包&霍夫曼编码
qqxhb
零基础数据结构与算法小学生编程算法算法贪心算法分数背包霍夫曼
5.2.2经典贪心算法问题(下)分数背包问题问题描述:有n个物品,每个物品有重量和价值。现在有一个容量为W的背包,每个物品可以取部分,求解如何选择物品放入背包,使得背包中物品的总价值最大。贪心解法:按照物品的单位价值(价值/重量)排序,优先选择单位价值高的物品。publicstaticdoublefractionalKnapsack(int[]weights,int[]values,intcapa
- LeetCode热题100--121
8Qi8
数据结构与算法leetcode算法贪心算法数据结构动态规划
LeetCode热题100–121.买卖股票的最佳时机题目链接题目类型:贪心、动态规划给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。示例1:输入:[7,1,5,3,6,4]输出
- LLM Agent(大模型智能体)与传统专家系统
一蓑烟雨6668
人工智能
LLMAgent(大模型智能体)与传统专家系统在技术原理、行为模式和应用场景上存在本质差异。以下是两者的核心区别及具体分析:一、核心原理与架构差异特性传统专家系统LLMAgent知识来源依赖人工编写的规则库(if-then逻辑)基于大模型预训练知识+实时学习能力(如工具调用、用户反馈)推理机制静态规则匹配(无法处理规则外场景)动态规划+链式推理(如任务分解、自我反思)适应性固定规则,需人工更新自主
- 基础算法思想(递归篇)
由于今天的练习计划太难了,所以我偷偷的跑去看下一周的练习题了递归虽然做法比较暴力,但是他确实是一个必不可少的思想,而且有一些问题就用递归才更方便,他还是很多算法的基础比如搜索、动态规划、树论等等。接下来就开始逐渐走进递归的世界吧!全排列问题这是最基础的递归以及回溯问题,我们可以不断的通过递归来实现“一条路走到黑”,然后再通过回溯去遍历其他的路径,由于要输出每一个排列组合,所以我们可以用一个数组将目
- Class10代码实现
Morning的呀
深度学习python深度学习pytorch
Class10代码实现importtorchfromtorchimportnnfromd2limporttorchasd2l#定义丢弃法函数#X:输入张量#dropout:丢弃概率(0~1)defdropout_layer(X,dropout):#丢弃概率在0-1之间assert0dropout:对每个位置判断是否保留#float():将布尔类型转换为浮点类型mask=(torch.rand(X.
- 数据结构与算法-09贪心算法&动态规划
阿诚学java
数据结构与算法学习记录贪心算法动态规划ios
贪心算法&动态规划1贪心算法介绍贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法通常用于解决优化问题,如最小化成本、最大化收益等。然而,贪心算法并不总是能够得到全局最优解,但它具有直观、高效、易于实现等优点,因此在许多实际问题中得到了广泛应用。基本思想贪心算法总是从问题的某一个初始解出发。
- Agent架构与工作原理:理解智能体的核心机制
hdzw20
agent学习ai机器学习agent智能体
Agent架构与工作原理:深入理解智能体的核心机制AIAgent的核心组成部分一个完整的AIAgent通常由以下几个核心模块组成:1.规划模块(PlanningModule)规划模块是Agent的"大脑",负责制定行动策略。它接收目标任务,分析当前状态,并制定一系列行动计划。规划可以是:短期规划:针对当前步骤的即时决策长期规划:面向整体目标的战略性规划动态规划:根据执行结果实时调整计划2.记忆模块
- 算法工程师必备:数据结构10大经典算法详解
数据结构与算法学习
数据结构与算法宝典算法数据结构ai
算法工程师必备:数据结构10大经典算法详解关键词:数据结构、经典算法、时间复杂度、应用场景、代码实现摘要:本文是算法工程师的“算法工具箱”指南,系统讲解数据结构领域最核心的10大经典算法(快速排序、归并排序、二分查找、深度优先搜索DFS、广度优先搜索BFS、动态规划、贪心算法、KMP字符串匹配、哈希算法、并查集)。通过生活案例、代码示例、复杂度分析和实战场景,帮你彻底掌握这些算法的原理与应用,真正
- C# 实现:动态规划解决 0/1 背包问题
江沉晚呤时
C#算法代理模式.netcorec#microsoft.net.netcore算法
在生活中,我们经常面临选择和优化的问题。例如:在有限的资源(如时间、金钱、空间等)下,如何选择最有价值的物品?背包问题(KnapsackProblem)就是一种经典的优化问题,广泛应用于项目选择、投资决策、行李打包等领域。今天,我们将深入探讨0/1背包问题,并通过动态规划方法给出一种高效的解决方案。0/1背包问题0/1背包问题的基本描述是:给定一个容量为C的背包。有n个物品,每个物品有一个重量w[
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt