Class10代码实现
import torch
from torch import nn
from d2l import torch as d2l
def dropout_layer(X,dropout):
assert 0 <= dropout <= 1
if dropout == 1:
return torch.zeros_like(X)
if dropout == 0:
return X
mask = (torch.rand(X.shape) > dropout).float()
return mask * X / (1.0 - dropout)
X = torch.arange(16,dtype = torch.float32).reshape((2,8))
print(X)
print(dropout_layer(X,0.))
print(dropout_layer(X,0.5))
print(dropout_layer(X,1.))
num_inputs,num_outputs,num_hiddens1,num_hiddens2 = 784,10,256,256
dropout1,dropout2 = 0.2,0.5
class Net(nn.Module):
def __init__(self,num_inputs,num_outputs,num_hiddens1,num_hiddens2,is_training = True):
super(Net,self).__init__()
self.num_inputs = num_inputs
self.training = is_training
self.lin1 = nn.Linear(num_inputs,num_hiddens1)
self.lin2 = nn.Linear(num_hiddens1,num_hiddens2)
self.lin3 = nn.Linear(num_hiddens2,num_outputs)
self.relu = nn.ReLU()
def forward(self,X):
H1 = self.relu(self.lin1(X.reshape((-1,self.num_inputs))))
if self.training == True:
H1 = dropout_layer(H1,dropout1)
H2 = self.relu(self.lin2(H1))
if self.training == True:
H2 = dropout_layer(H2,dropout2)
out = self.lin3(H2)
return out
net = Net(num_inputs,num_outputs,num_hiddens1,num_hiddens2)
num_epochs,lr,batch_size = 10,0.5,256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)