- Jupyter Notebook:数据科学的“瑞士军刀”
a小胡哦
机器学习基础人工智能机器学习
在数据科学的世界里,JupyterNotebook是一个不可或缺的工具,它就像是数据科学家手中的“瑞士军刀”,功能强大且灵活多变。今天,就让我们一起深入了解这个神奇的工具。一、JupyterNotebook是什么?JupyterNotebook是一个开源的Web应用程序,它允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。它支持多种编程语言,其中Python是最常用的语言之一。Jupy
- 活着
平雁南
在这里才感觉自己真正活着。每天几乎都被课程填满,听来听去终于重新体会到数学的乐趣了。微分拓扑是一直想听的,代数几何是一直倾慕而没有接触的,微分流形的老师很有趣,扯了一大堆有的没的,代数数论讲的根本听不懂,同调代数应该会是我喜欢的感觉吧,想找些书好好了解了解范畴什么的概念了。自己看书的话,也是看的很舒服。说实话在这里没有乱七八糟的东西的生活,是我最喜欢最向往的。这种纯纯的氛围,好像只有高考的时候我才
- 求知导刊杂志《求知导刊》杂志社求知导刊编辑部2025年第19期目录
QQ296078736
科技
理论探索AI技术对初中数学教学方式的变革与反思董秀茂;2-4新课标下初中数学新教材中方程单元的新教法实践研究杨兰桂;5-7以创客项目推动综合实践活动课程常态化实施的研究靳云;8-10+97新开办学校团队主题式课例研修的“四化”路径研究李吉庆;11-13初中班主任视角下班级文化多元共生与个性彰显的若干思考查银环;14-16小学各学段学生数学空间想象力的递进式培养研究袁占明;17-19小学数学步道校本
- 用matlab对微分方程组进行仿真,基于MATLAB的微分方程组的数值计算
稗官无印
238科技资讯科技资讯SCIENCE&TECHNOLOGYINFORMATION2009NO.06SCIENCE&TECHNOLOGYINFORMATION学术论坛传统的解微分方程组的方法有近似分析解法﹑表解法和图解法。这些方法有一定的局限性。MATLAB是一种基于矩阵的数学软件包,该软件包包括了一个数值程序扩展库,并且有高级编程格式。应用MATLAB工具箱中自带的四阶五级的龙格库塔法(ode45
- python进行常见的数学计算(方差,一元二次方程,求导,积分等等)
ccut 第一混
python
代码如下:importnumpyasnpimportmathimportcmathimportscipy#平均数defaverage(lst):sum_lst=0forninlst:sum_lst=sum_lst+nreturnsum_lst/len(lst)#方差defvariance(lst):average_lst=average(lst)sum_variance=0forninlst:su
- 120.三角形最小路径和
HamletSunS
题解:给出一个三角形,求从顶点到最底层的路径的最小和方法:动态规划2个参数,i,j,代表从(i,j)出发直到底层的最小路径和。f(i,j)=t[i][j]+min(f[i+1][j],f[i+1][j+1])优化方案:根据dp的方程可以发现,当前元素只与下一行的同列和右侧有关系,与左侧无关。那么优化思路就是只用1行,从左开始往右更新即可。这样就可以只用一维数组dp[j]代表从某行(通过不断更新可更
- 器件仿真学习记录(一)
john
学习
训练工具总览什么是TCADTCAD和半导体产业工艺计算机辅助设计(TCAD)就是是使用电脑仿真来改进和优化半导体工艺技术和器件。TCAD仿真工具可以解出存在于半导体器件中的硅晶圆或者layersystem中的基础的物理偏微分方程,例如离散几何的扩散和输运方程。这些密集的物理拟合使得TCAD仿真有能够预测的准确性。因此,使用TCAD计算机仿真来代替在改进和对新的半导体器件或工艺进行特征提取时需要对晶
- 隐私计算基础学习——数论基础知识(群、环、有限域、常用定理)
_Totoro_
隐私计算基础学习学习密码学可信计算技术安全
本文主要记录隐私计算中涉及的群、环、有限域的最基本的概念以及一些常用的数论定理,仅供参考。一、群1.群的定义群本质是一个集合GGG,这个集合上定义了一个运算⋅\cdot⋅(例如加法或乘法),满足下面的性质:封闭性:∀a,b∈G\foralla,b\inG∀a,b∈G,满足a⋅b∈Ga\cdotb\inGa⋅b∈G;结合律:∀a,b,c∈G\foralla,b,c\inG∀a,b,c∈G,满足(a⋅
- 香港优才计划80分和120分获批概率分析!附香港优才申请官方网址+申请流程
香港优才计划身份者
香港优才计划80分和120分获批概率分析!附香港优才申请官方网址+申请流程香港优才计划能否获批成功受多种因素影响,包括申请人的综合评分、行业需求、以及申请人是否符合香港的人才需求等,打分只是一个方面,没有一个具体的分数段可以保证一定能获批。根据以往获批数据来看,香港优才计划并非唯分数论,其中也有不少高分被拒和低分获批的案例,今天来给大家总结下香港优才计划不同分数段获批难度,附上申请网址和申请流程!
- 微分方程与动力系统
建模中…
数学建模python
微分方程-基本概念-定义:含有未知函数及其导数的等式,未知函数是一元函数的为常微分方程,是多元函数的为偏微分方程。-阶数:方程中出现的未知函数导数的最高阶数。-解:满足微分方程的函数,包括通解(含有任意常数且任意常数个数与方程阶数相同)和特解(给通解中的任意常数确定特定值后得到的解)。-常微分方程-一阶常微分方程:如可分离变量方程(形式为y'=f(x)g(y),通过分离变量\frac{dy}{g(
- 【数学二】一元函数微分学- 利用导数的概念、定理、几何含义求解
WEL测试
数学二学习考研数学二导数
考试要求1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3、了解高阶导数的概念,会求简单函数的高阶导数.4、会求分段函数的导数,
- 【高中数学/对数/导数】曲线y=ln|x|过坐标原点的两切线方程为?
土门子拉马努金
高中数学之导数高中数学对数导数canvas
【问题】曲线y=ln|x|过坐标原点的两切线方程为?(高考真题)【出处】《高考数学函数与导数题型解题研究》P5第8题中原教研工作室编著【解答】y=ln|x|的图线分两部分,y轴左边的部分是y=lnx的镜像所以知y=lnx上切线过原点的方程,k值取负就行。设y=lnx上切点为A,则有ya/xa=lnx/x=f'(x)=1/x,化简得lnx/x=1/x,得x=e,故y=1,A(e,1)Kao=1/e,
- 塔防战争:动态寻径与成长系统的控制论架构
闲人编程
塔防游戏pyqt6路径JPS动态智能
目录塔防战争:动态寻径与成长系统的控制论架构引言第一章炮塔成长系统1.1属性升级模型1.2分支进化树第二章动态路径规划2.1JPS优化算法2.2实时障碍更新第三章敌人行为系统3.1多波次生成3.2智能绕障策略第四章经济平衡系统4.1资源流动方程4.2动态定价模型第五章特殊能力系统5.1连锁反应模型5.2减速力场公式第六章可视化优化6.1路径热力图6.2攻击范围环第七章性能调优7.1空间划分加速7.
- 从FDTD仿真到光学神经网络:机器学习在光子器件设计中的前沿应用工坊
信息快讯
机器学习神经网络人工智能光子芯片逆向设计
FDTD仿真与光学神经网络的基础概念FDTD(时域有限差分)是一种数值方法,用于求解麦克斯韦方程组,广泛应用于光子器件设计。光学神经网络通过光波导、衍射元件等物理结构实现矩阵运算,具有低能耗、高并行的优势。机器学习在光子器件设计中的作用体现在优化器件参数(如纳米结构尺寸、材料折射率分布)、加速逆设计过程(直接生成满足性能的目标结构)以及实现端到端的光学系统建模。FDTD仿真与机器学习的结合方法将F
- 回顾、遗憾、人生
Cline_4e56
1最近看了东大方程式第五期。东大方程式是一档日本的综艺,邀请了大量的东大学生,分享这些世人眼里的学霸在光环背后的生活。不同个性,不同思想的学霸们在这里分享日常生活,与众不同的烦恼,再加上明石家的秋刀鱼的调动,整个节目欢快得飞起。之前偶然在微博偶然看到一位新入学的小哥以及其自信的态度说自己最骄傲的事情就是自己的存在,而接下来一位受访者则吐槽考入东大就是为了看看那些自满自负者。剪辑师一下子剪出了针尖对
- 分析学中的连续性方法
math590127
医学图像处理与分析学学习
分析学中的连续性方法我为什么想到这个方法连续性方法的基本原理应用举例连续性方法是数学中的重要方法,在数学分析、微分方程等方向有重要应用,而我之前居然不知道这个词。参考了一些资料进行整理,但是毕竟是个很大的体系,只列出了部分知识点。参考资料见:1.https://www.bilibili.com/video/BV12a411Y71B?p=48&vd_source=84d747ae63525b79ef
- 计算机网络采用分层有哪些好处,网络协议分层的优点
温卡龙
计算机网络采用分层有哪些好处
分层网络协议是计算机术语。网络协议分层的优点你知道吗?计算机网络安全有哪些基本注意事项,一起和佰佰安全网看看吧。网络安全是一个关系国家安全和主权、社会的稳定、民族文化的继承和发扬的重要问题。其重要性,正随着全球信息化步伐的加快而变到越来越重要。“家门就是国门”,安全问题刻不容缓。网络安全是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性学科。
- 2018-07-11 田世梅
holly8888
名称:中国金柳工艺品有限公司【打卡始于2018年3月19日,持续打卡于2018年7月11日】卡第83天【知~学习】《京瓷哲学》P140-150《大学》1遍,共119遍《六项精进》1遍,共121遍【经典名句分享】人生.成功的方程式=思维方式*热情*能力【行~实践】一、修身:(对自己个人)晚饭后跟女儿去广场散步二、齐家:(对家庭和家人)陪老公姐姐女儿相亲三、建功(对工作)1,跟踪生产,做商检{积善}:
- 2023-10-06
万象朦朦
"最后,我把一段我特别喜欢的话跟大家分享,大家很可能听过这段话,来自罗伯特·海因莱因的《时间足够你爱》:一个男人,应该能够换尿布,策划战争,杀猪,开船,设计房子,写十四行诗,结算账户,砌墙,接脱臼的骨头,安慰濒死的人,服从命令,发布命令,携手合作,独立行动,解数学方程,分析新问题,铲粪,电脑编程,做出可口的饭,善打架,勇敢地死去。只有昆虫才专业化。"
- 2019-05-24
实验中学王延利
临近期末,各备课组为提高本学科成绩是各显神通,我们七年级数学备课组也为此做了很多工作,付出许多努力。首先我们利用周一时间,在全班开展数学优差帮扶活动,责任到人。图片发自App图片发自App5月20日周一下午的说课活动中,我们9名老师认真总结考点,讨论出题方向和复习方法,并形成文字性材料妥善保存。图片发自App结合考点以及期中考试学生的失分情况,我们决定于周二下午举行检测活动,内容为一元一次方程的解
- 河南萌新联赛2025第二场-河南农业大学
Submit Failed
萌新联赛算法思维c++整除分块数/树
一周时间过的这么快,马上第二场的萌新联赛就结束了,对比上一场,这次罚坐的时间更长了,感觉平时学的知识在比赛中根本开不到算法题,这次的A题是一个数论中的整除分块的问题,卡了我好久好久,后来才知道是自己见识短浅了(其实就是一个模板题),卡的我没心态去开其他题了。打瓦能想出来这种题目的也是很时髦了,废话不多说,题目来源于:K-打瓦这是一道签到题,读完题之后就会发现不管输入的是啥,最后都让你输出同一个字符
- 初等数论Ⅱ
christ_lrs
学习笔记数论
Bylby学长2025.7.13讲课记录insmskySummerCamp目录大步小步算法(BSGS)例题T1[TJOI2007]可爱的质数T2[SDOI2011]计算器T3SPOJ3105ModStirling数第二类Stirling数第一类Stirling数Stirling数与幂例题T1CF932ETeamWorkT2CF961GPartitionsT3CF1278FCards大步小步算法(B
- “养娃如种树•家长成长营”~能量分享卡片21#0612~坚持Day21
馨元_亲子教育_生活本真
父母好好学习孩子天天向上父母不能只看分数如今的社会,唯分数论,以至于从孩子上学的那一天开始,父母们就把孩子的成绩看得比什么都重要。其实,这是一个误区!分数不是衡量孩子的唯一标准,一味地看重考试得分,是对孩子一种无形的伤害。现实中有不少孩子,学习成绩很好,但品行不佳,同学们都不愿意理他;还有一些孩子,虽然成绩平平,但人品不错,能跟同学们打成一片。这也充分说明,孩子的未来不一定是成绩决定的,只有品行良
- uniapp打开第三方APP
界面架构师
uniappuni-app前端安卓
在uniapp中打开第三方应用,需要使用runtime模块1.调用第三方程序打开指定的URLplus.runtime.openURL(url,errorCB,identity)url(String):必选要打开的URL地址字符串类型,各平台支持的地址类型存在差异,参考平台URL支持表。errorCB(OpenErrorCallback):可选打开URL失败的回调,打开指定URL地址失败时的回调,并
- 解析几何纲目:椭圆大题:2010年文数全国卷题20
易水樵
椭圆:2010年文科数学全国卷题2020.(本小题满分12分)设分别是椭圆,的左、右焦点,过的直线与相交于两点,且成等差数列.(1)求;(2)若直线的斜率为,求的值.【解答问题1】因为成等差数列,所以而根据椭圆的定义可知:椭圆的长半轴【解答问题2:极坐标方法】若以为原点,则椭圆的极坐标方程为:若记点所对应的极角为,则∴.【提炼与提高】什么是椭圆?平面上到两个定点的距离等于定值的点的集合,就是椭圆。
- 椭圆的弦:2015年文数全国卷B题20
易水樵
椭圆的弦:2015年文数全国卷B题20(20)(本小题满分12分)已知椭圆的离心率为,点在上.(I)求的方程;(Ⅱ)直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为证明:直线的斜率与直线的斜率的乘积为定值.【解答问题I】代入点坐标得:∴的方程为:【解答问题Ⅱ】椭圆的方程可化为:因为两点均在椭圆上,所以以上两式相减得:直线的斜率为;直线的斜率为.所以,证明完毕.【提炼与提高】点差法(平方差法
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 机器学习算法之回归算法
福葫芦
机器学习回归算法
一、回归算法思维导图二、算法概念、原理、应用场景和实例代码1、线性回归1.1、概念线性回归算法是一种统计分析方法,用于确定两种或两种以上变量之间的定量关系。线性回归算法通过建立线性方程来预测因变量(y)和一个或多个自变量(x)之间的关系。其基本形式为y=wx+e,其中w是权重,x是自变量,e是误差项。1.2、算法原理线性回归算法的核心在于找到最佳的拟合直线,使得预测值与实际值之间的误差最小。
- 空间曲线正交投影及其距离计算的理论与实践
老歌老听老掉牙
python正交投影
引言:正交投影的几何本质在三维空间中,正交投影是一种基础而重要的几何变换,它将空间中的点沿特定方向映射到一个平面上。当我们考虑将空间曲线投影到由给定法向量n\mathbf{n}n定义的平面时,这一问题在计算机图形学、CAD/CAM系统和科学计算中具有广泛应用。本文将从数学原理、Python实现到距离计算的等价性问题,全面探讨这一几何操作的深层内涵。设空间曲线由参数方程r(t)=(x(t),y(t)
- 人工神经网络的拓扑结构,神经网络的神经元结构
快乐的小蓝猫
神经网络深度学习人工智能rnn
bp神经网络BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><