- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 医疗AI新基建:MCP与A2A协议的破局与前瞻
Allen_Lyb
医疗高效编程研发人工智能健康医疗自动化自然语言处理数据库
一、引言1.1研究背景与动因在数字化与智能化飞速发展的时代浪潮下,医疗AI已成为全球医疗领域变革与创新的关键驱动力。从疾病的早期精准诊断,到个性化治疗方案的制定,再到远程医疗与健康管理,医疗AI正以其强大的数据处理能力、精准的模式识别能力和高效的决策辅助能力,重塑着传统医疗服务的格局。据相关数据显示,2023年中国AI医疗行业规模达973亿元,预计2028年将增至1598亿元,年复合增长率达10.
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 机器学习模型评估:交叉验证、混淆矩阵、ROC曲线及其在医学影像领域的应用
猿享天开
机器学习矩阵人工智能DICOM医学影像模型评估
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 基于Opencv的手势识别
双马尾为什么是神
opencv人工智能计算机视觉
thumb目录项目背景项目概览功能实现分类器选择数据收集与处理数据增强与傅里叶描述子计算SVM训练GUI设计未来展望项目背景回首过去一年半的大学时光,我深感自己过于安逸。没有明确的目标,对于学习也不太上心。倘若继续这样浑浑噩噩过下去,即便以后只想得过且过地过普通生活,最终结果恐怕难遂人愿。“取乎其上,得乎其中;取乎其中,得乎其下;取乎其下,则无所得矣。”于是乎我制定了与未来展望相匹配的学习路径,哪
- 工业缺陷检测的计算机视觉方法总结
思绪漂移
计算机视觉人工智能缺陷检测
工业缺陷检测的计算机视觉方法总结传统方法特征提取方式:颜色:基于HSV/RGB空间分析,如颜色直方图、颜色矩等纹理:采用LBP、Haar、Gabor滤波器等算子提取纹理模式形状:基于Hu矩、Zernike矩等数学描述符刻画几何特性尺寸:通过连通域分析计算物体像素面积、周长等参数典型处理流程:手动设计特征提取算法建立规则分类器(如SVM、决策树)基于阈值分割目标区域深度学习方法核心特点:端到端学习:
- LeetCode 力扣 第21题解题笔记
艾伦的自由之翼
leetcode链表算法
题目:将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。(1)递归解法L1.val意思是取链表L1的头结点本题可以提炼出一个字问题,假设原问题是L1和L2,并且假设L1的值更小,那么合并L1,L2,就可以做如下考虑:取出头结点L1,解决子问题:合并L1next和L2,L1的next指向子问题的结果就可以了模式识别:子问题和原问题具有相同结构,意思就是说,返
- 阿里云内容审核之图片审核 spring boot 项目
大佐不会说日语~
阿里云云计算安全springboot
内容审核-阿里云视觉智能开放平台阿里云的图片审核服务是一种高效的内容安全解决方案,用于自动检测和过滤图片中的不适当内容。以下是关于阿里云图片审核服务:审核方式:阿里云图片审核服务采用两种主要方式来检测图片内容:MD5比对:通过比较上传图片的MD5值与素材库中的MD5值来获取审核结果。卷积神经网络(CNN)技术:使用CNN技术进行特征提取、各部分特征汇总,并通过分类器预测识别来进行审核。内容安全服务
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- MATLAB水果分级系统水果识别
清风明月来几时
图像算法处理matlab开发语言
MATLAB草莓识别系统是一个基于MATLAB的图像处理系统,用于识别和分类草莓图像。该系统可以帮助农业领域的研究人员和农民快速准确地识别草莓品种和成熟度,从而帮助决策种植、采摘和销售的工作。系统的主要功能包括:1.图像预处理:对草莓图像进行去噪、增强和标准化等预处理工作,以提高后续的图像分析和识别效果。2.特征提取:从预处理后的图像中提取代表草莓特征的信息,例如颜色、形状、纹理等。3.分类器训练
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 【C# + HALCON 机器视觉】机器视觉在变速箱齿轮齿形精度检测中的实战应用
AI_DL_CODE
机器视觉:C#+HALCONc#halcon机器视觉计算机视觉变速箱齿轮检测齿形精度检测傅里叶变换
摘要:本文聚焦C#与HALCON在变速箱齿轮齿形精度检测的实战应用,阐述基于傅里叶变换分析齿形轮廓、深度学习分类器判断硬度标记完整性的HALCON技术,以及C#集成多相机同步采集系统实现齿轮360°全检的开发过程。详细展示从环境搭建、硬件配置、图像采集处理,到齿形分析、标记检测、系统集成的实操流程,并提供完整代码。实际案例表明,该系统使检测周期缩短至3秒/件,精度达±5μm。同时分析高精度算法、系
- 构建RAG智能体(5):语义护栏之过滤无用信息
tilblackout
MachineLearning机器学习人工智能langchain
本篇文章我们将深入探讨语义护栏(SemanticGuardrailing),即如何利用嵌入模型作为语言骨干,并在此基础上训练一个分类器,以有效过滤掉对聊天机器人无益甚至有害的信息。本文将详细阐述这种方法相对于传统自回归引导过滤的优势,并通过生成合成数据的实际任务,展示了构建语义护栏的具体步骤。文章目录1引言2.利用嵌入模型构建语义护栏2.1相对于自回归引导过滤的优势2.2生成合成数据2.3更快地生
- R语言与临床模型预测——LASSO回归,单因素多因素cox,差异表达分析,Venn图,森林图,列线图,矫正曲线,ROC全套代码及解析——第九部分 lasso回归排除具有共线性的基因 本专栏可免费答疑
楷然教你学生信
r语言机器学习生物信息学数据挖掘cox回归临床模型预测
1.下载数据2.匹配基因3.基因去重复4.匹配临床数据5.批量cox回归分析6.差异表达基因筛选7.取交集,选出预后相关的差异表达基因8.森林图绘制9.lasso回归进一步排除具有共线性的基因10.验证集验证,数据合并验证11.多因素cox回归建模12.列线图13.矫正曲线14.ROC曲线分析上次筛选了预后相关差异基因,下面我们开始对这些基因进行lasso-cox回归:下面数据准备:这是之前做批量
- 【深度学习新浪潮】什么是system 1和system 2?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能大模型推理模型COT模型蒸馏动态推理
在大模型研究中,System1和System2的概念源于心理学家DanielKahneman的双系统理论,用于描述人类思维的两种模式。System1代表快速、直觉、自动化的思维(如模式识别),而System2代表慢速、有意识、需要努力的逻辑推理(如复杂数学计算)。这一理论被引入AI领域后,成为理解大模型能力边界和优化方向的重要框架。一、大模型中的System1与System2的定义System1(
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 3篇5章2节:绘制临床研究中的趋势图与ROC曲线
MD分析
用R探索医药数据科学信息可视化r语言r语言-4.2.1数据分析趋势变化图模型性能评估
在医学统计分析与数据科学实践中,趋势图与ROC曲线不仅是可视化的“门面担当”,更是揭示数据背后规律与诊断性能的核心工具。无论是观察血压、血糖等临床指标随时间或干预手段的变化,还是评估模型的判别能力与诊断准确性,一幅设计得当的图表,往往胜过千言万语。本文围绕R语言中两个功能强大的可视化函数展开,深入剖析它们在实际科研中的应用技巧与美化策略。通过案例演示与参数讲解,你将学会如何绘制清晰、美观、信息量丰
- 睡岗离岗检测算法 Python
燧机科技SuiJi
人工智能python算法深度学习神经网络
睡岗离岗检测算法的核心在于实时监控和智能分析,睡岗离岗检测算法通过安装在关键区域的监控摄像头,系统能够捕捉到员工的活动画面。当系统检测到人体位置长时间未发生变化时,将启动睡姿分类器。该分类器能够识别多种睡姿,如趴在桌子上睡、坐在凳子上后仰睡等。一旦识别为睡姿,系统将立即触发告警机制。这可以通过向管理人员发送警报信号,或通过语音提醒员工的方式实现。睡岗离岗检测算法在多种场景下均有广泛应用。该算法能够
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- 21、子图同构问题的深度解析
metal
子图同构图论算法
子图同构问题的深度解析1.子图同构问题概述子图同构问题是图论中的一个核心问题,广泛应用于社交网络分析、生物信息学、模式识别等领域。该问题的定义是:给定两个图,一个是较大的主图(HostGraph),另一个是较小的模式图(PatternGraph),判断主图中是否存在一个子图与模式图同构。简单来说,就是要找到主图中与模式图结构完全一致的子图。子图同构问题的难度在于它是一个NP完全问题,意味着在最坏情
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 人类的具身智能与机器的具身智能
人机与认知实验室
人类具身智能与机器具身智能的根本区别在于其基础机制和本质属性。人类具身智能是基于生物体的生理结构和神经系统的复杂交互,通过身体与环境的直接感知和体验,形成具有情感、意识和主观性的认知与行为能力。这种智能是动态的、适应性强的,并且深受个体经验、文化背景和社会互动的影响。而机器具身智能则是通过传感器、算法和数理模型来模拟与物理世界的交互,依赖于预设的规则和数据驱动的模式识别,缺乏人类的主观体验、情感和
- 人脸数目统计系统实现:基于OpenCV和C++的人脸识别
本文还有配套的精品资源,点击获取简介:本项目介绍如何利用OpenCV库和C++语言开发一个人脸识别系统,用于统计图像中的人脸数量。内容涵盖人脸识别的基本原理、关键步骤及技术细节,包括使用Haar级联分类器进行人脸检测,并通过C++编程实现从图像处理到人脸统计的全过程。1.人脸识别基本原理与步骤人脸识别技术已经在安全验证、智能家居、社交媒体等多个领域得到了广泛应用。其基本原理是通过分析人脸图像中的特
- 大型语言模型的智能本质是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力语言模型人工智能自然语言处理
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造大型语言模型(如GPT-4、Claude等)的智能本质可概括为基于海量数据的统计模式识别与生成系统,其核心能力源于对语言规律的深度学习,但缺乏真正的理解与意识。以下从本质特征、技术机制、典型案例及争议点展开分析:一、智能本质的核心特征统
- Java NLP炼金术:从词袋到深度学习,构建AI时代的语言魔方
墨夶
Java学习资料人工智能java自然语言处理
一、JavaNLP的“三剑客”:框架与工具链1.1ApacheOpenNLP:传统NLP的“瑞士军刀”目标:用词袋模型实现文本分类与实体识别代码实战:文档分类器的“炼成术”//OpenNLP文档分类器(基于词袋模型)importopennlp.tools.doccat.*;importopennlp.tools.util.*;publicclassDocumentClassifier{//训练模型
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- 2025年人工智能、虚拟现实与交互设计国际学术会议
学术小八
学术人工智能vr交互
重要信息官网:www.aivrid.com时间:2025年10月17-19日地点:中国-东莞部分介绍征稿主题包括但不限于:生物特征模式识别机器视觉专家系统深度学习智能搜索自动编程智能控制智能机器人系统组件虚拟现实平台用于VR/AR的AI平台数据和生成、操作、分析和验证浸入式环境和虚拟世界的生成优化和现实的渲染人工智能与用户体验个性化推荐系统情感计算与用户响应虚拟现实与沉浸式技术沉浸式环境设计交互设
- 论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab
UQI-LIUWJ
论文笔记人工智能
ICLR2024判断生成的文本是人写的还是大模型写的现有的检测器主要分为两类有监督分类器在训练领域表现出色,但在面对来自不同领域或不熟悉模型生成的文本时表现变差零样本分类器免疫领域特定的退化在检测精度上可以与有监督分类器相当但目前的方法计算成本高、计算时间长——>提出了一种新的假设来检测机器生成的文本人类和机器在给定上下文的情况下选择词汇存在明显的差异人类的选择比较多样,而机器更倾向于选择具有更高
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那