在MATLAB中使用神经网络进行语音情感识别通常涉及以下步骤:数据准备、特征提取、神经网络模型构建、训练与评估。以下是详细说明和示例代码:
y[n] = x[n] - 0.97x[n-1]
。参考matlab代码
% 读取语音文件
[audio, fs] = audioread('speech.wav');
% 预加重
pre_emphasis = 0.97;
audio = filter([1, -pre_emphasis], 1, audio);
% 分帧(示例:25ms帧长,10ms重叠)
frame_length = round(0.025 * fs);
frame_overlap = round(0.015 * fs);
frames = buffer(audio, frame_length, frame_overlap, 'nodelay');
常用语音情感特征:
% 使用Audio Toolbox的mfcc函数
coeffs = mfcc(audio, fs, 'LogEnergy', 'Ignore');
% 特征标准化(可选)
coeffs = (coeffs - mean(coeffs)) / std(coeffs);
layers = [
imageInputLayer([num_mfcc_coeffs num_frames 1]) % 输入MFCC矩阵
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 64, 'Padding', 'same')
reluLayer
fullyConnectedLayer(num_emotions) % 情感类别数
softmaxLayer
classificationLayer
];
layers = [
sequenceInputLayer(num_mfcc_coeffs)
bilstmLayer(128, 'OutputMode', 'last')
fullyConnectedLayer(num_emotions)
softmaxLayer
classificationLayer
];
cv = cvpartition(labels, 'HoldOut', 0.2);
train_data = features(:, cv.training);
test_data = features(:, cv.test);
options = trainingOptions('adam', ...
'MaxEpochs', 30, ...
'MiniBatchSize', 32, ...
'ValidationData', {val_features, val_labels}, ...
'Plots', 'training-progress');
net = trainNetwork(train_data, train_labels, layers, options);
predicted_labels = classify(net, test_data);
accuracy = sum(predicted_labels == test_labels) / numel(test_labels);
confusionmat(test_labels, predicted_labels);
% 1. 加载数据集(假设已预处理为MFCC特征矩阵和标签)
load('emotion_dataset.mat'); % 包含features和labels
% 2. 数据分割
cv = cvpartition(labels, 'HoldOut', 0.2);
train_data = features(:,:,:, cv.training);
test_data = features(:,:,:, cv.test);
% 3. 定义CNN模型
layers = [
imageInputLayer([num_coeffs num_frames 1])
convolution2dLayer(3, 32, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
fullyConnectedLayer(64)
dropoutLayer(0.5)
fullyConnectedLayer(num_emotions)
softmaxLayer
classificationLayer
];
% 4. 训练
options = trainingOptions('adam', 'Verbose', true);
net = trainNetwork(train_data, labels(cv.training), layers, options);
% 5. 测试
predicted = classify(net, test_data);
accuracy = mean(predicted == labels(cv.test));
trainingOptions
中启用 'ExecutionEnvironment', 'gpu'
。通过上述步骤,可以在MATLAB中构建一个基于神经网络的语音情感识别系统。实际应用中需根据数据规模和场景调整模型复杂度。