llama factory lora 微调 qwen2.5 7B Instruct模型

项目背景 甲方提供一台三卡4080显卡 需要进行qwen2.5 7b Instruct模型进行微调。以下为整体设计。
要使用 LLaMA-FactoryQwen2.5 7B Instruct模型 进行 LoRA(Low-Rank Adapters)微调,流程与之前提到的 Qwen2 7B Instruct 模型类似。LoRA 微调是一种高效的微调方法,通过低秩适配器层来调整预训练模型的权重,而不是全量训练整个模型。

环境准备

确保你已经安装了必要的依赖,包括 LLaMA-FactoryDeepSpeedtransformers 库。如果尚未安装,可以使用以下命令安装:

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

如果使用量化 gptq 需要安装以下环境

pip install auto_gptq optimum

如果使用量化 awq 需要安装以下环境

pip install autoawq

获取 Qwen2.5 7B Instruct 模型 权重

确保你已经获取了 Qwen2.5 7B Instruct 模型 的预训练权重。如果没有,你可以从 Hugging Face 或其他平台上下载该模型,或者根据需要联系模型发布者获取相应的模型文件。这里采用魔搭社区下载qwen2.5 7b Instruct模型。

原模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct')

int 8 量化模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8')

int 4 量化模型

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct-AWQ')

3配置 LoRA 微调

LLaMA-Factory 中,LoRA 微调通常需要对模型进行一些配置,以下是实现 LoRA 微调的关键步骤:

编辑llama factory训练参数

新建llama factory 训练配置文件

examples/train_lora/qwen2.5_7b_lora_sft.yaml

加载 Qwen2.5 7B Instruct 模型 和 数据集,并设置 LoRA 训练范围。

### model
model_name_or_path: Qwen/Qwen2.5-7B-Instruct-AWQ

### method
stage: sft
do_tr

你可能感兴趣的:(llama)