JAVA基础之Fork/Join框架

1、核心思想

Fork/Join框架是Java 7提供的一个用于并行执行任务的框架, 核心思想就是把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果,其实现思想与MapReduce有异曲同工之妙。

Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。比如计算1+2+…+10000,可以分割成10个子任务,每个子任务分别对1000个数进行求和,最终汇总这10个子任务的结果。Fork/Join的运行流程图如下:

1.png

Fork/Join框架使用一个巧妙的算法来平衡线程的负载,称为工作窃取(work-stealing)算法。工作窃取的运行流程图如下:

2.png

假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。

2、应用实例

Fork/Join框架主要由两部分组成:

  • 分割任务。首先我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停的分割,直到分割出的子任务足够小。
  • 执行任务并合并结果。分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。

Fork/Join使用两个类来完成以上两件事情:

  • ForkJoinTask
    我们要使用ForkJoin框架,必须首先创建一个ForkJoin任务。它提供在任务中执行fork()join()操作的机制,通常情况下我们不需要直接继承ForkJoinTask类,而只需要继承它的子类,Fork/Join框架提供了以下两个子类:
    • RecursiveAction:用于没有返回结果的任务。
    • RecursiveTask :用于有返回结果的任务。
  • ForkJoinPool
    ForkJoinTask需要通过ForkJoinPool来执行,任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。

让我们通过一个简单的需求来使用下Fork/Join框架,需求是:计算1~8的累加结果。

使用Fork/Join框架首先要考虑到的是如何分割任务,如果我们希望每个子任务最多执行两个数的相加,那么设置分割的阈值是2,由于是8个数字相加,所以Fork/Join框架会把这个任务fork成两个子任务,子任务一负责计算1+2+3+4,子任务二负责计算3+4+5+6,然后子任务会继续分隔,直到累加的数字将为两个,最后逐层join子任务的结果。

public class CountTask extends RecursiveTask {

    private static final int THRESHHOLD = 2;
    private int start;
    private int end;

    public CountTask(int start, int end) {
        this.start = start;
        this.end = end;
    }

    @Override
    protected Integer compute() {
        System.out.println(start + " - " + end + " begin");
        int sum = 0;
        boolean canCompute = (end - start) <= THRESHHOLD;
        if (canCompute) { // 达到了计算条件,则直接执行
            for (int i = start; i <= end; i++) {
                sum += i;
            }
        } else { // 不满足计算条件,则分割任务
            int middle = (start + end) / 2;

            CountTask leftTask = new CountTask(start, middle);
            CountTask rightTask = new CountTask(middle + 1, end);

            leftTask.fork(); // 执行子任务
            rightTask.fork();
            int leftResult = leftTask.join(); // 等待子任务执行完毕
            int rightResult = rightTask.join();

            sum = leftResult + rightResult; // 合并子任务的计算结果
        }
        System.out.println(start + " - " + end + " end");
        return sum;
    }

    public static void main(String[] args) throws InterruptedException, ExecutionException {
        ForkJoinPool pool = new ForkJoinPool();
        CountTask task = new CountTask(1, 8);
        Future future = pool.submit(task);
        if (task.isCompletedAbnormally()) {
            System.out.println(task.getException());
        } else {
            System.out.println("result: " + future.get());
        }

    }

}

打印结果:

1 - 8 begin
1 - 4 begin
5 - 8 begin
5 - 6 begin
5 - 6 end
1 - 2 begin
1 - 2 end
3 - 4 begin
3 - 4 end
7 - 8 begin
7 - 8 end
5 - 8 end
1 - 4 end
1 - 8 end
result: 36

由于每个任务是由线程池执行的,每次的执行顺序会有不同,但是,父任务肯定在所有子任务之后完成,比如1-8的计算肯定在子任务1-4、5-8之后完成,但是1-4、5-8的完成顺序是不确定的。

ForkJoinTask在执行的时候可能会抛出异常,但是我们没办法在主线程里直接捕获异常,所以ForkJoinTask提供了isCompletedAbnormally()方法来检查任务是否已经抛出异常或已经被取消了,并且可以通过ForkJoinTaskgetException方法获取异常。

getException方法返回Throwable对象,如果任务被取消了则返回CancellationException。如果任务没有完成或者没有抛出异常则返回null。

3、 源码解读

3.png

3.1 ForkJoinPool

ForkJoinTask代表一个需要执行的任务,真正执行这些任务的线程放在一个ForkJoinPool里面。ForkJoinPool是一个可以执行ForkJoinTaskExcuteService,与ExcuteService不同的是它采用了work-stealing模式:所有在池中的空闲线程尝试去执行其他线程创建的子任务,这样就很少有线程处于空闲状态,非常高效。

池中维护着ForkJoinWorkerThread对象数组:

    /**
     * Array holding all worker threads in the pool.  Initialized upon
     * construction. Array size must be a power of two.  Updates and
     * replacements are protected by scanGuard, but the array is
     * always kept in a consistent enough state to be randomly
     * accessed without locking by workers performing work-stealing,
     * as well as other traversal-based methods in this class, so long
     * as reads memory-acquire by first reading ctl. All readers must
     * tolerate that some array slots may be null.
          */
     ForkJoinWorkerThread[] workers;

ForkJoinWorkerThread为任务的执行线程,workers数组在构造方法中初始化,其大小必须为2的n次方(方便将取模转换为移位运算)。

ForkJoinPool初始化方法:

// initialize workers array with room for 2*parallelism if possible
int n = parallelism << 1;
if (n >= MAX_ID)
  n = MAX_ID;
else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
  n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
}
workers = new ForkJoinWorkerThread[n + 1];

可见,workers数组大小由parallelism属性决定,parallelism默认为处理器个数,workers数组默认大小为处理器数量2*,但是不能超过MAX_ID

private static final int MAX_ID = 0x7fff; // max poolIndex

什么情况下需要添加线程呢?当新的任务到来,线程池会通知其他线程前去处理,如果这时没有处于等待的线程或者处于活动的线程非常少(这是通过ctl属性来判断的),就会往线程池中添加线程:

/**
 * Tries to create and start a worker; minimally rolls back counts
 * on failure.
      */
    private void addWorker() {
    Throwable ex = null;
    ForkJoinWorkerThread t = null;
    try {
        t = factory.newThread(this);
    } catch (Throwable e) {
        ex = e;
    }
    if (t == null) {  // null or exceptional factory return
        long c;       // adjust counts
        do {} while (!UNSAFE.compareAndSwapLong
                     (this, ctlOffset, c = ctl,
                      (((c - AC_UNIT) & AC_MASK) |
                       ((c - TC_UNIT) & TC_MASK) |
                       (c & ~(AC_MASK|TC_MASK)))));
        // Propagate exception if originating from an external caller
        if (!tryTerminate(false) && ex != null &&
            !(Thread.currentThread() instanceof ForkJoinWorkerThread))
            UNSAFE.throwException(ex);
    }
    else
        t.start();
    }

增加线程通过ForkJoinWorkerThreadFactory来实现,底层实现方法为:

    /**
     * Creates a ForkJoinWorkerThread operating in the given pool.
     *
     * @param pool the pool this thread works in
     * @throws NullPointerException if pool is null
     */
    protected ForkJoinWorkerThread(ForkJoinPool pool) {
        super(pool.nextWorkerName());
        this.pool = pool;
        int k = pool.registerWorker(this);
        poolIndex = k;
        eventCount = ~k & SMASK; // clear wait count
        locallyFifo = pool.locallyFifo;
        Thread.UncaughtExceptionHandler ueh = pool.ueh;
        if (ueh != null)
            setUncaughtExceptionHandler(ueh);
        setDaemon(true);
    }

可见,该线程生成后需要回调ForkJoinPool. registerWorker在线程池中完成注册:

    /**
     * Callback from ForkJoinWorkerThread constructor to
     * determine its poolIndex and record in workers array.
     *
     * @param w the worker
     * @return the worker's pool index
     */
    final int registerWorker(ForkJoinWorkerThread w) {
        /*
         * In the typical case, a new worker acquires the lock, uses
         * next available index and returns quickly.  Since we should
         * not block callers (ultimately from signalWork or
         * tryPreBlock) waiting for the lock needed to do this, we
         * instead help release other workers while waiting for the
         * lock.
         */
        for (int g;;) {
            ForkJoinWorkerThread[] ws;
            if (((g = scanGuard) & SG_UNIT) == 0 &&
                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
                                         g, g | SG_UNIT)) {
                int k = nextWorkerIndex;
                try {
                    if ((ws = workers) != null) { // ignore on shutdown
                        int n = ws.length;
                        if (k < 0 || k >= n || ws[k] != null) {
                            for (k = 0; k < n && ws[k] != null; ++k)
                                ;
                            if (k == n)
                                ws = workers = Arrays.copyOf(ws, n << 1);
                        }
                        ws[k] = w;
                        nextWorkerIndex = k + 1;
                        int m = g & SMASK;
                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
                    }
                } finally {
                    scanGuard = g;
                }
                return k;
            }
            else if ((ws = workers) != null) { // help release others
                for (ForkJoinWorkerThread u : ws) {
                    if (u != null && u.queueBase != u.queueTop) {
                        if (tryReleaseWaiter())
                            break;
                    }
                }
            }
        }
    }

整个框架大量采用顺序锁,好处是不用阻塞,不好的地方是会有额外的循环。这里也是通过循环来注册这个线程,在循环的过程中有两种情况发生:

  • compareAndSwapInt操作成功,扫描workers数组,找到一个为空的项,并把新创建的线程放在这个位置;如果没有找到,表示数组大小不够,则将数组扩大2倍;
  • compareAndSwapInt操作失败,需要循环重新尝试直接成功为止,从代码中可以看出,即使是失败了,也不忘做一些额外的事:通知其他线程去执行没有完成的任务

ForkJoinPool可以通过execute提交ForkJoinTask任务,然后通过ForkJoinWorkerThread. pushTask实现。

    /**
     * Unless terminating, forks task if within an ongoing FJ computation in the
     * current pool, else submits as external task.
     */
    private  void forkOrSubmit(ForkJoinTask task) {
        ForkJoinWorkerThread w;
        Thread t = Thread.currentThread();
        if (shutdown)
            throw new RejectedExecutionException();
        if ((t instanceof ForkJoinWorkerThread) && (w = (ForkJoinWorkerThread) t).pool == this)
            w.pushTask(task);
        else
            addSubmission(task);
    }

    /**
     * Arranges for (asynchronous) execution of the given task.
     *
     * @param task
     *            the task
     * @throws NullPointerException
     *             if the task is null
     * @throws RejectedExecutionException
     *             if the task cannot be scheduled for execution
     */
    public void execute(ForkJoinTask task) {
        if (task == null)
            throw new NullPointerException();
        forkOrSubmit(task);
    }

除此之外,ForkJoinPool还覆盖并重载了从ExecutorService继承过来的executesubmit方法外,可以接受Runnable``与Callable类型的任务。

ExecutorService一样,ForkJoinPool可以调用shutdown()shutdownNow()来终止线程,会先设置每个线程的任务状态为CANCELLED,然后调用Threadinterrupt方法来终止每个线程。

ExcuteService不同的是,ForkJoinPool除了可以执行Runnable任务外,还可以执行ForkJoinTask任务; ExcuteService中处于后面的任务需要等待前面任务执行后才有机会执行,而ForkJoinPool会采用work-stealing模式帮助其他线程执行任务,即ExcuteService解决的是并发问题,而ForkJoinPool解决的是并行问题

3.2 ForkJoinWorkerThread

ForkJoinWorkerThread继承自Thread,受ForkJoinPool支配用以执行ForkJoinTask

该类中有几个重要的域:

    /**
     * Capacity of work-stealing queue array upon initialization.
     * Must be a power of two. Initial size must be at least 4, but is
     * padded to minimize cache effects.
     */
    private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;

    /**
     * Maximum size for queue array. Must be a power of two
     * less than or equal to 1 << (31 - width of array entry) to
     * ensure lack of index wraparound, but is capped at a lower
     * value to help users trap runaway computations.
     */
    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M

    /**
     * The work-stealing queue array. Size must be a power of two.
     * Initialized when started (as oposed to when constructed), to
     * improve memory locality.
     */
    ForkJoinTask[] queue;

    /**
     * The pool this thread works in. Accessed directly by ForkJoinTask.
     */
    final ForkJoinPool pool;

    /**
     * Index (mod queue.length) of next queue slot to push to or pop
     * from. It is written only by owner thread, and accessed by other
     * threads only after reading (volatile) queueBase.  Both queueTop
     * and queueBase are allowed to wrap around on overflow, but
     * (queueTop - queueBase) still estimates size.
     */
    int queueTop;

    /**
     * Index (mod queue.length) of least valid queue slot, which is
     * always the next position to steal from if nonempty.
     */
    volatile int queueBase;
    /**
     * The index of most recent stealer, used as a hint to avoid
     * traversal in method helpJoinTask. This is only a hint because a
     * worker might have had multiple steals and this only holds one
     * of them (usually the most current). Declared non-volatile,
     * relying on other prevailing sync to keep reasonably current.
     */
    int stealHint;

ForkJoinWorkerThread使用数组实现双端队列,用来盛放ForkJoinTaskqueueTop指向对头,queueBase指向队尾。本地线程插入任务、获取任务都在队头进行,其他线程“窃取”任务则在队尾进行。

poolIndex本线程在ForkJoinPool中工作线程数组中的下标,stealHint保存了最近的窃取者(来窃取任务的工作线程)的下标(poolIndex)。注意这个值不准确,因为可能同时有很多窃取者来窃取任务,这个值只能记录其中之一。

添加任务:

    /**
     * Pushes a task. Call only from this thread.
     *
     * @param t the task. Caller must ensure non-null.
     */
    final void pushTask(ForkJoinTask t) {
        ForkJoinTask[] q; int s, m;
        if ((q = queue) != null) {    // ignore if queue removed
            long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
            UNSAFE.putOrderedObject(q, u, t);
            queueTop = s + 1;         // or use putOrderedInt
            if ((s -= queueBase) <= 2)
                pool.signalWork();
            else if (s == m)
                growQueue();
        }
    }

首先将任务放在queueTop指向的队列位置,再将queueTop加1。

然后分析队列容量情况,当数组元素比较少时(1或者2),就调用signalWork()方法。signalWork()方法做了两件事:

  • 唤醒当前线程;
  • 当没有活动线程时或者线程数较少时,添加新的线程。

else if部分表示队列已满(队头指针=队列长度减1),调用growQueue()扩容。

join任务:

    /**
     * Possibly runs some tasks and/or blocks, until joinMe is done.
     *
     * @param joinMe the task to join
     * @return completion status on exit
     */
    final int joinTask(ForkJoinTask joinMe) {
        ForkJoinTask prevJoin = currentJoin;
        currentJoin = joinMe;
        for (int s, retries = MAX_HELP;;) {
            if ((s = joinMe.status) < 0) {
                currentJoin = prevJoin;
                return s;
            }
            if (retries > 0) {
                if (queueTop != queueBase) {
                    if (!localHelpJoinTask(joinMe))
                        retries = 0;           // cannot help
                }
                else if (retries == MAX_HELP >>> 1) {
                    --retries;                 // check uncommon case
                    if (tryDeqAndExec(joinMe) >= 0)
                        Thread.yield();        // for politeness
                }
                else
                    retries = helpJoinTask(joinMe) ? MAX_HELP : retries - 1;
            }
            else {
                retries = MAX_HELP;           // restart if not done
                pool.tryAwaitJoin(joinMe);
            }
        }
    }

join操作类似插队,确保入参joinMe执行完毕后再进行后续操作。

这里面有个变量retries,表示可以重试的次数,最大值为MAX_HELP=16。重试的过程如下:

  • 判断joinMe是否已完成(joinMe.status < 0),如果是,则直接返回。
  • 判断retries是否用完了,如果是,则调用pool.tryAwaitJoin()阻塞当前新城,等待joinMe完成
  • retries大于0,首先判断当前线程的任务队列queue是否为空(queueTop != queueBase),如果不为空,调用localHelpJoinTask()方法,判断joinMe任务是否在自己的queue的队首位置,如果正好在,执行该任务;同时,由于queue不为空,则证明自己并不是没事干,无法帮助别的线程干活(工作窃取),retries置零
  • 如果自己的queue为空了,调用helpJoinTask()方法进行工作窃取,帮助其他线程干活,反正闲着也是闲着。
  • 帮别人干活也不是每次都能成功,如果连续8次都失败了(retries == MAX_HELP >>> 1),说明人品不行,自己还是歇会吧,调用Thread.yield()让权。不过,让权之前还会做最有一次努力,调用tryDeqAndExec(),看看自己在等的任务是否在某个线程的队尾,在的话偷过来执行掉。

3.3 ForkJoinTask

当我们调用ForkJoinTaskfork方法时,程序会调用ForkJoinWorkerThreadpushTask方法异步的执行这个任务,然后立即返回结果。

    /**
     * Arranges to asynchronously execute this task.  While it is not
     * necessarily enforced, it is a usage error to fork a task more
     * than once unless it has completed and been reinitialized.
     * Subsequent modifications to the state of this task or any data
     * it operates on are not necessarily consistently observable by
     * any thread other than the one executing it unless preceded by a
     * call to {@link #join} or related methods, or a call to {@link
     * #isDone} returning {@code true}.
     *
     * 

This method may be invoked only from within {@code * ForkJoinPool} computations (as may be determined using method * {@link #inForkJoinPool}). Attempts to invoke in other contexts * result in exceptions or errors, possibly including {@code * ClassCastException}. * * @return {@code this}, to simplify usage */ public final ForkJoinTask fork() { ((ForkJoinWorkerThread) Thread.currentThread()) .pushTask(this); return this; }

可见,fork()操作是通过调用ForkJoinWorkerThread.pushTask()实现的。该方法在上面已做分析,不再赘述。

join方法的主要作用是阻塞当前线程并等待获取结果。代码如下:

    /**
     * Returns the result of the computation when it {@link #isDone is
     * done}.  This method differs from {@link #get()} in that
     * abnormal completion results in {@code RuntimeException} or
     * {@code Error}, not {@code ExecutionException}, and that
     * interrupts of the calling thread do not cause the
     * method to abruptly return by throwing {@code
     * InterruptedException}.
     *
     * @return the computed result
     */
    public final V join() {
        if (doJoin() != NORMAL)
            return reportResult();
        else
            return getRawResult();
    }

    /**
     * Report the result of invoke or join; called only upon
     * non-normal return of internal versions.
     */
    private V reportResult() {
        int s; Throwable ex;
        if ((s = status) == CANCELLED)
            throw new CancellationException();
        if (s == EXCEPTIONAL && (ex = getThrowableException()) != null)
            UNSAFE.throwException(ex);
        return getRawResult();
    }

首先,它调用了doJoin()方法,通过doJoin()方法得到当前任务的状态来判断返回什么结果,任务状态有四种:

private static final int NORMAL      = -1;
private static final int CANCELLED   = -2;
private static final int EXCEPTIONAL = -3;
private static final int SIGNAL      =  1;
  • 如果任务状态是已完成,则直接返回任务结果。
  • 如果任务状态是被取消,则直接抛出CancellationException
  • 如果任务状态是抛出异常,则直接抛出对应的异常。

再来看doJoin方法:

private int doJoin() {
    int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
    return (s = status) < 0 ? s :
            ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
                    (w = (wt = (ForkJoinWorkerThread)t).workQueue).
                            // 执行任务
                            tryUnpush(this) && (s = doExec()) < 0 ? s :
                            wt.pool.awaitJoin(w, this, 0L) :
                    // 阻塞非工作线程,直到工作线程执行完毕
                    externalAwaitDone();
}

final int doExec() {
    int s; boolean completed;
    if ((s = status) >= 0) {
        try {
            completed = exec();
        } catch (Throwable rex) {
            return setExceptionalCompletion(rex);
        }
        if (completed)
            s = setCompletion(NORMAL);
    }
    return s;
}

doJoin()方法里,首先通过查看任务的状态,看任务是否已经执行完成,如果执行完成, 则直接返回任务状态;如果没有执行完,则从任务数组里取出任务并执行。如果任务顺利执行完成,则设置任务状态为NORMAL,如果出现异常,则记录异常,并将任务状态设置为EXCEPTIONAL

你可能感兴趣的:(JAVA基础之Fork/Join框架)