Seurat24节气之6谷雨---Interaction Tips

谷雨:雨生百谷。雨量充足而及时,谷类作物能茁壮成长。

载入数据

此小插图演示了一些与Seurat对象进行交互的有用功能。出于演示目的,我们将使用在第一个指导教程中创建的2700 PBMC对象。您可以从我们的SeuratData包中加载数据。为了模拟有两个重复的情况,我们将每个群集中的一半单元随机分配给“ rep1”,另一半分配给“ rep2”。

library(Seurat)
library(SeuratData)
InstallData("pbmc3k")
pbmc <- LoadData("pbmc3k", type = "pbmc3k.final")

# pretend that cells were originally assigned to one of two replicates (we assign randomly here)
# if your cells do belong to multiple replicates, and you want to add this info to the Seurat
# object create a data frame with this information (similar to replicate.info below)
set.seed(42)
pbmc$replicate <- sample(c("rep1", "rep2"), size = ncol(pbmc), replace = TRUE)

在群集ID和复制之间切换身份类

# Plot UMAP, coloring cells by cell type (currently stored in object@ident)
DimPlot(pbmc, reduction = "umap")
image
# How do I create a UMAP plot where cells are colored by replicate?  First, store the current
# identities in a new column of meta.data called CellType
pbmc$CellType <- Idents(pbmc)
# Next, switch the identity class of all cells to reflect replicate ID
Idents(pbmc) <- "replicate"
DimPlot(pbmc, reduction = "umap")
image
# alternately : DimPlot(pbmc, reduction = 'umap', group.by = 'replicate') you can pass the
# shape.by to label points by both replicate and cell type

# Switch back to cell type labels
Idents(pbmc) <- "CellType"

通过集群ID,复制或两者同时对单元进行制表

# How many cells are in each cluster
table(Idents(pbmc))
## 
##  Naive CD4 T Memory CD4 T   CD14+ Mono            B        CD8 T FCGR3A+ Mono 
##          697          483          480          344          271          162 
##           NK           DC     Platelet 
##          155           32           14
# How many cells are in each replicate?
table(pbmc$replicate)
## 
## rep1 rep2 
## 1348 1290
# What proportion of cells are in each cluster?
prop.table(table(Idents(pbmc)))
## 
##  Naive CD4 T Memory CD4 T   CD14+ Mono            B        CD8 T FCGR3A+ Mono 
##  0.264215315  0.183093252  0.181956027  0.130401820  0.102729340  0.061410159 
##           NK           DC     Platelet 
##  0.058756634  0.012130402  0.005307051
# How does cluster membership vary by replicate?
table(Idents(pbmc), pbmc$replicate)
##               
##                rep1 rep2
##   Naive CD4 T   354  343
##   Memory CD4 T  249  234
##   CD14+ Mono    232  248
##   B             173  171
##   CD8 T         154  117
##   FCGR3A+ Mono   81   81
##   NK             81   74
##   DC             18   14
##   Platelet        6    8
prop.table(table(Idents(pbmc), pbmc$replicate), margin = 2)
##               
##                       rep1        rep2
##   Naive CD4 T  0.262611276 0.265891473
##   Memory CD4 T 0.184718101 0.181395349
##   CD14+ Mono   0.172106825 0.192248062
##   B            0.128338279 0.132558140
##   CD8 T        0.114243323 0.090697674
##   FCGR3A+ Mono 0.060089021 0.062790698
##   NK           0.060089021 0.057364341
##   DC           0.013353116 0.010852713
##   Platelet     0.004451039 0.006201550

选择特定的单元格并设置Seurat对象的子集

# What are the cell names of all NK cells?
WhichCells(pbmc, idents = "NK")
##   [1] "AAACCGTGTATGCG" "AAATTCGATTCTCA" "AACCTTACGCGAGA" "AACGCCCTCGTACA"
##   [5] "AACGTCGAGTATCG" "AAGATTACCTCAAG" "AAGCAAGAGCTTAG" "AAGCAAGAGGTGTT"
##   [9] "AAGTAGGATACAGC" "AATACTGAATTGGC" "AATCCTTGGTGAGG" "AATCTCTGCTTTAC"
##  [13] "ACAAATTGTTGCGA" "ACAACCGAGGGATG" "ACAATTGATGACTG" "ACACCCTGGTGTTG"
##  [17] "ACAGGTACTGGTGT" "ACCTGGCTAAGTAG" "ACGAACACCTTGTT" "ACGATCGAGGACTT"
##  [21] "ACGCAATGGTTCAG" "ACGCTGCTGTTCTT" "ACGGAACTCAGATC" "ACGTGATGTGACAC"
##  [25] "ACGTTGGAGCCAAT" "ACTGCCACTCCGTC" "ACTGGCCTTCAGTG" "ACTTCAACGTAGGG"
##  [29] "AGAACAGAAATGCC" "AGATATACCCGTAA" "AGATTCCTGTTCAG" "AGCCTCTGCCAATG"
##  [33] "AGCGATTGAGATCC" "AGGATGCTTTAGGC" "AGGGACGAGTCAAC" "AGTAATACATCACG"
##  [37] "AGTCACGATGAGCT" "AGTTTGCTACTGGT" "ATACCACTGCCAAT" "ATACTCTGGTATGC"
##  [41] "ATCCCGTGCAGTCA" "ATCTTTCTTGTCCC" "ATGAAGGACTTGCC" "ATGATAACTTCACT"
##  [45] "ATGATATGGTGCTA" "ATGGACACGCATCA" "ATGGGTACATCGGT" "ATTAACGATGAGAA"
##  [49] "ATTCCAACTTAGGC" "CAAGGTTGTCTGGA" "CAATCTACTGACTG" "CACCACTGGCGAAG"
##  [53] "CACGGGTGGAGGAC" "CAGATGACATTCTC" "CAGCAATGGAGGGT" "CAGCGGACCTTTAC"
##  [57] "CAGCTCTGTGTGGT" "CAGTTTACACACGT" "CATCAGGACTTCCG" "CATCAGGATAGCCA"
##  [61] "CATGAGACGTTGAC" "CATTACACCAACTG" "CATTTCGAGATACC" "CCTCGAACACTTTC"
##  [65] "CGACCACTAAAGTG" "CGACCACTGCCAAT" "CGAGGCTGACGCTA" "CGCCGAGAGCTTAG"
##  [69] "CGGCGAACGACAAA" "CGGCGAACTACTTC" "CGGGCATGTCTCTA" "CGTACCTGGCATCA"
##  [73] "CGTGTAGACGATAC" "CGTGTAGAGTTACG" "CGTGTAGATTCGGA" "CTAAACCTCTGACA"
##  [77] "CTAACGGAACCGAT" "CTACGCACTGGTCA" "CTACTCCTATGTCG" "CTAGTTACGAAACA"
##  [81] "CTATACTGCTACGA" "CTATACTGTCTCAT" "CTCGACTGGTTGAC" "CTGAGAACGTAAAG"
##  [85] "CTTTAGTGACGGGA" "GAACCAACTTCCGC" "GAAGTGCTAAACGA" "GAATGCACCTTCGC"
##  [89] "GAATTAACGTCGTA" "GACGGCACACGGGA" "GAGCGCTGAAGATG" "GAGGTACTGACACT"
##  [93] "GAGGTGGATCCTCG" "GATAGAGAAGGGTG" "GATCCCTGACCTTT" "GCACACCTGTGCTA"
##  [97] "GCACCACTTCCTTA" "GCACTAGAGTCGTA" "GCAGGGCTATCGAC" "GCCGGAACGTTCTT"
## [101] "GCCTACACAGTTCG" "GCGCATCTTGCTCC" "GCGCGATGGTGCAT" "GGAAGGTGGCGAGA"
## [105] "GGACGCTGTCCTCG" "GGAGGCCTCGTTGA" "GGCAAGGAAAAAGC" "GGCATATGCTTATC"
## [109] "GGCCGAACTCTAGG" "GGCTAAACACCTGA" "GGGTTAACGTGCAT" "GGTGGAGAAACGGG"
## [113] "GTAGTGTGAGCGGA" "GTCGACCTGAATGA" "GTGATTCTGGTTCA" "GTGTATCTAGTAGA"
## [117] "GTTAAAACCGAGAG" "GTTCAACTGGGACA" "GTTGACGATATCGG" "TAACTCACTCTACT"
## [121] "TAAGAGGACTTGTT" "TAATGCCTCGTCTC" "TACGGCCTGGGACA" "TACTACTGATGTCG"
## [125] "TACTCTGAATCGAC" "TACTGTTGAGGCGA" "TAGCATCTCAGCTA" "TAGCCCACAGCTAC"
## [129] "TAGGGACTGAACTC" "TAGTGGTGAAGTGA" "TAGTTAGAACCACA" "TATGAATGGAGGAC"
## [133] "TATGGGTGCATCAG" "TATTTCCTGGAGGT" "TCAACACTGTTTGG" "TCAGACGACGTTAG"
## [137] "TCCCGAACACAGTC" "TCCTAAACCGCATA" "TCGATTTGCAGCTA" "TCTAACACCAGTTG"
## [141] "TGATAAACTCCGTC" "TGCACAGACGACAT" "TGCCACTGCGATAC" "TGCTGAGAGAGCAG"
## [145] "TGGAACACAAACAG" "TGGTAGACCCTCAC" "TGTAATGACACAAC" "TGTAATGAGGTAAA"
## [149] "TTACTCGATCTACT" "TTAGTCTGCCAACA" "TTCCAAACTCCCAC" "TTCCCACTTGAGGG"
## [153] "TTCTAGTGGAGAGC" "TTCTGATGGAGACG" "TTGTCATGGACGGA"
# How can I extract expression matrix for all NK cells (perhaps, to load into another package)
nk.raw.data <- as.matrix(GetAssayData(pbmc, slot = "counts")[, WhichCells(pbmc, ident = "NK")])

# Can I create a Seurat object based on expression of a feature or value in object metadata?
subset(pbmc, subset = MS4A1 > 1)
## An object of class Seurat 
## 13714 features across 414 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
subset(pbmc, subset = replicate == "rep2")
## An object of class Seurat 
## 13714 features across 1290 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
# Can I create a Seurat object of just the NK cells and B cells?
subset(pbmc, idents = c("NK", "B"))
## An object of class Seurat 
## 13714 features across 499 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
# Can I create a Seurat object of all cells except the NK cells and B cells?
subset(pbmc, idents = c("NK", "B"), invert = TRUE)
## An object of class Seurat 
## 13714 features across 2139 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  2 dimensional reductions calculated: pca, umap
# note that if you wish to perform additional rounds of clustering after subsetting we recommend
# re-running FindVariableFeatures() and ScaleData()

计算聚类中的平均基因表达

# How can I calculate the average expression of all cells within a cluster?
cluster.averages <- AverageExpression(pbmc)
head(cluster.averages[["RNA"]][, 1:5])
##               Naive CD4 T Memory CD4 T CD14+ Mono          B      CD8 T
## AL627309.1    0.006128664  0.005927264 0.04854338 0.00000000 0.02054586
## AP006222.2    0.000000000  0.008206078 0.01088471 0.00000000 0.01191488
## RP11-206L10.2 0.007453092  0.000000000 0.00000000 0.02065031 0.00000000
## RP11-206L10.9 0.000000000  0.000000000 0.01050116 0.00000000 0.00000000
## LINC00115     0.019118933  0.024690483 0.03753737 0.03888541 0.01948277
## NOC2L         0.497463190  0.359811462 0.27253750 0.58653489 0.55704897
# Return this information as a Seurat object (enables downstream plotting and analysis) First,
# replace spaces with underscores '_' so ggplot2 doesn't fail
orig.levels <- levels(pbmc)
Idents(pbmc) <- gsub(pattern = " ", replacement = "_", x = Idents(pbmc))
orig.levels <- gsub(pattern = " ", replacement = "_", x = orig.levels)
levels(pbmc) <- orig.levels
cluster.averages <- AverageExpression(pbmc, return.seurat = TRUE)
cluster.averages
## An object of class Seurat 
## 13714 features across 9 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)
# How can I plot the average expression of NK cells vs. CD8 T cells?  Pass do.hover = T for an
# interactive plot to identify gene outliers
CellScatter(cluster.averages, cell1 = "NK", cell2 = "CD8_T")
image
# How can I calculate expression averages separately for each replicate?
cluster.averages <- AverageExpression(pbmc, return.seurat = TRUE, add.ident = "replicate")
CellScatter(cluster.averages, cell1 = "CD8_T_rep1", cell2 = "CD8_T_rep2")
image
# You can also plot heatmaps of these 'in silico' bulk datasets to visualize agreement between
# replicates
DoHeatmap(cluster.averages, features = unlist(TopFeatures(pbmc[["pca"]], balanced = TRUE)), size = 3, 
    draw.lines = FALSE)
image

你可能感兴趣的:(Seurat24节气之6谷雨---Interaction Tips)