- 机器学习-XGBoost和SHAP解析数据
python机器学习ML
机器学习人工智能数据分析python
一、引言在机器学习领域,XGBoost表现出色,具有高效性、准确性、灵活性和良好的防过拟合能力。高效性使其能快速处理大规模复杂数据,降低训练时间成本。通过组合弱学习器提高准确性和泛化能力。其支持多种任务和自定义指标,参数调优选项丰富。内置正则化机制防止过拟合。同时,SHAP对模型解释起关键作用,能计算特征的SHAP值来明确特征对预测结果的贡献,帮助理解模型决策。二、数据准备和模型训练1.导入所需库
- 图书推荐-话少不墨迹《大模型技术30讲》
_abab
图书推荐语言模型
关于本书:大模型技术30讲减少过拟合的数据方法过拟合是模型过度拟合训练数据噪声的现象,导致测试性能下降增加高质量标注数据是减少过拟合最有效的方法数据增强通过生成现有数据的变体扩展数据集,提高模型泛化能力自监督预训练可有效利用未标注数据进行模型初始化模型相关正则化方法L2正则化和权重衰减通过添加权重惩罚项约束模型复杂度Dropout通过随机禁用神经元防止对特定特征的依赖早停法通过监控验证集性能终止训
- Python 中 scikit - learn 的 Lasso 回归
PythonAI编程架构实战家
Python人工智能与大数据Python编程之道python回归kotlinai
Python中scikit-learn的Lasso回归关键词:Lasso回归、线性模型、特征选择、正则化、scikit-learn、机器学习、Python摘要:本文深入探讨了Python中scikit-learn库的Lasso回归实现。Lasso(LeastAbsoluteShrinkageandSelectionOperator)是一种线性回归的变体,它通过L1正则化实现特征选择和模型简化。我们
- 机器学习数据预处理阶段为什么需要——归一化处理
参考:https://www.cnblogs.com/bjwu/p/8977141.html通常,在DataScience中,预处理数据有一个很关键的步骤就是数据的标准化。这里主要引用sklearn文档中的一些东西来说明,主要把各个标准化方法的应用场景以及优缺点总结概括,以来充当笔记。提升模型精度在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数
- 7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解
以山河作礼。
#机器学习算法机器学习算法回归
7.机器学习-十大算法之一拉索回归(Lasso)算法原理讲解一·摘要二·个人简介三·前言四·原理讲解五·算法流程六·代码实现6.1坐标下降法6.2最小角回归法七·第三方库实现7.1scikit-learn实现(坐标下降法):7.2scikit-learn实现(最小角回归法):一·摘要拉索回归(LassoRegression)是一种线性回归的正则化形式,它通过引入L1范数惩罚项来实现模型的稀疏性,从
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 【人工智能面经第五期:模型训练与优化核心面试深度问答】
码上有前
PytorchPython深度学习人工智能面试职场和发展
作者:“码上有前”文章简介:人工智能面经欢迎小伙伴们点赞、收藏⭐、留言模型训练与优化核心面试深度问答摘要围绕模型训练与优化的训练技巧(正则化、迁移学习)和数据工程(数据增强、标注质量)展开,通过20个关键问题,解析正则化协同策略、迁移学习适配场景、数据增强实践等核心要点,助力读者掌握人工智能与计算机视觉岗位面试中模型训练优化的知识体系,明晰技术原理与实际应用的关联。目录训练技巧-正则化策略相关问题
- 【深度学习第六期深度学习中的归一化与正则化技术:原理、实践与应用】
码上有前
Python深度学习Pytorch深度学习人工智能cnn
作者:“码上有前”文章简介:深度学习欢迎小伙伴们点赞、收藏⭐、留言深度学习中的归一化与正则化技术:原理、实践与应用摘要:本文深入探讨深度学习中批量归一化(BN)、层归一化(LN)、标准化以及正则化等关键技术。详细阐述它们的基本原理,包括如何调整数据分布、控制模型复杂度等;通过丰富的实例和对应代码,展示在不同网络架构中这些技术的具体实现方式,以及对模型训练和性能的影响;同时,对比分析各项技术的特点和
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- CHAIN(GAN的一种)训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络深度学习pytorch算法
简介简介:作者针对数据有限场景下GANs训练中的判别器过拟合问题,提出了CHAIN(Lipschitz连续性约束归一化)方法。作者首先从理论角度分析了GAN泛化误差,发现减少判别器权重梯度范数对提升泛化能力至关重要。然后深入研究了批归一化(BN)在GAN判别器中应用困难的根本原因,通过理论分析证明BN的中心化和缩放步骤会导致梯度爆炸。基于这些发现,CHAIN设计了两个核心模块:用零均值正则化替代中
- 【AI大模型面试八股文】大模型训练中如何应对灾难性遗忘问题?
一叶千舟
AI大模型应用【八股文】人工智能深度学习
目录✅面试回答模板:一、什么是灾难性遗忘?举个通俗的例子:二、灾难性遗忘是怎么发生的?常见触发情境:三、我们为什么要关注灾难性遗忘?四、主流解决方案汇总✅1.固定部分参数(FeatureExtraction)✅2.正则化策略(Regularization)✅3.回放机制(Rehearsal/Replay)✅4.参数隔离(ParameterIsolation)✅5.使用提示学习(PromptLear
- 【Torch】nn.Dropout算法详解
油泼辣子多加
深度学习算法
1.定义nn.Dropout是PyTorch中用于防止神经网络过拟合的正则化层。其核心思想是在训练阶段随机“丢弃”(置零)部分神经元的输出,以减少网络对特定神经元的过度依赖;在推理阶段则保持所有神经元输出不变。2.输入与输出输入(Input)任意形状的浮点张量(如torch.float32、torch.float64等),常见于全连接层或卷积层的激活输出。输出(Output)与输入张量形状、dty
- 经典文生图的GAN模型-HDGAN介绍
这张生成的图像能检测吗
GAN系列生成对抗网络人工智能神经网络计算机视觉深度学习机器学习
简介简介:这篇论文提出了一种名为HDGAN(Hierarchically-nestedDiscriminatorsGAN)的新方法,用于解决文本到图像合成这一挑战性任务。该方法的主要创新点包括:分层嵌套对抗目标:在网络层次结构内部引入配套的分层嵌套对抗目标,正则化中层表示并辅助生成器训练单流生成器架构:提出可扩展的单流生成器架构,更好地适应联合鉴别器并将生成图像提升到高分辨率多目的对抗损失:采用多
- 【深度学习|学习笔记】如何在深度学习中使用 正则化技术 进行模型压缩、稀疏建模和迁移学习调优?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记迁移学习人工智能机器学习
【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?文章目录【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?✅一、使用正则化进行模型压缩(ModelCompression)目标:方法:L1正则化促使权重稀疏化代码示例:后续压缩步骤
- 行为正则化与顺序策略优化结合的离线多智能体学习算法
离线多智能体强化学习(MARL)是一个新兴领域,目标是在从预先收集的数据集中学习最佳的多智能体策略。随着人工智能技术的发展,多智能体系统在诸如自动驾驶、智能家居、机器人协作以及智能调度决策等方面展现了巨大的应用潜力。但现有的离线MARL方法也面临很多挑战,仍存在不协调行为和分布外联合动作的问题。为了应对这些挑战,中山大学计算机学院、美团履约平台技术部开展了学术合作项目,并取得了一些的成果,希望分享
- 【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。
努力毕业的小土博^_^
深度学习学习笔记深度学习学习笔记人工智能机器学习
【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。文章目录【深度学习|学习笔记】什么是正则化?如何理解正则化?L0、L1、L2正则化的起源、发展、原理、应用和对比详解,附代码。前言一、什么是正则化?为什么需要它?✅
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 对SPM12的认识(二)
对SPM12的认识(二)四、SegmentDataChannel体积(Volumes)偏差正则化(Biasregularisation)偏差的FWHM(BiasFWHM)保存偏差校正图像(SaveBiasCorrected)Tissues组织组织概率图(Tissueprobabilitymap)高斯数(Num.Gaussians)原始组织(NativeTissue)变形组织(WarpedTissu
- 机器学习数据预处理:L2正则化(岭回归)
数字化与智能化
人工智能机器学习机器学习L2正则化岭回归
一、L2正则化介绍L2正则化,也称为岭回归(RidgeRegression),是一种常用的正则化方法。它在线性回归模型中通过在损失函数中添加L2范数的平方来惩罚模型的复杂度,从而防止过拟合。在线性回归中,我们的目标是最小化损失函数,通常以最小化均方误差来衡量。而L2正则化通过在损失函数中添加模型参数的L2范数的平方来进行正则化。L2范数是指模型参数的平方和的开方。正则化惩罚的目标是使模型参数尽量接
- 基于Split Bregman算法的稀疏图像重建(附带Matlab代码)
代码创造者
算法matlab人工智能Matlab
基于SplitBregman算法的稀疏图像重建(附带Matlab代码)SplitBregman算法是一种用于稀疏图像重建的优化算法,它能够有效地恢复受损的图像并保持重要的细节。本文将详细介绍SplitBregman算法的原理,并提供Matlab代码实现。算法原理SplitBregman算法是一种迭代算法,用于求解具有L1正则化项的优化问题。在图像重建中,我们希望找到一个稀疏表示来恢复受损的图像。该
- 基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测
智能算法研学社(Jack旭)
#正则极限学习机(RELM)智能优化算法应用算法回归数据挖掘
基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测文章目录基于沙猫群算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于沙猫群算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个训练样
- 基于战争策略算法优化的正则化极限学习机(RELM)的回归预测
基于战争策略算法优化的正则化极限学习机(RELM)的回归预测文章目录基于战争策略算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于战争策略算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 2025年大模型学习新攻略!掌握未来AI的关键技能
AI大模型-大飞
人工智能产品经理程序员AgentAI大模型大模型教程
1.公开课(视频):李宏毅机器学习斯坦福CS336:从零开始构建语言模型卡内基梅隆大学【多模态机器学习】RAGFromScratchHuggingFaceNLP课程2.机器学习和编程基础:pytorch官方中文教程[中英字幕]吴恩达机器学习李宏毅机器学习3.Attention机制:论文:《AttentionIsAllYouNeed》Transformer论文逐段精读【论文精读】-跟李沐学AIzhi
- 智能光学计算成像技术前沿体系解析
m0_75133639
光电光学成像光子学生物医学材料科学计算成像技术全息成像研究生
当前光学成像领域正经历以人工智能为驱动的范式变革。本知识体系涵盖以下核心模块:基础理论层从计算成像物理模型(含波前分析、图像传感器噪声建模)切入,建立光学-算法联合优化理论框架,重点解析正则化逆问题求解(如ADMM算法)与神经表示(NeuralRepresentations)等前沿数学工具。AI融合层深度剖析深度学习在成像中的革新应用:端到端光学设计:通过可微光学模型(衍射/折射/复杂透镜)实现硬
- AI模型的泛化性的第一性原理是什么?
mao_feng
人工智能
目录**一、泛化性的第一性原理:统计学习理论的核心****1.独立同分布假设(IID)是泛化的基础****2.泛化误差:理论本质的数学刻画****3.模型复杂度与样本量的权衡****二、实现泛化的核心机制:正则化与隐式约束****1.显式正则化:复杂度惩罚****2.隐式正则化:优化过程的泛化诱导****3.数据层面的泛化增强****三、深度学习的特殊性:过参数化与泛化的悖论****1.“双下降曲
- 基于哈里斯鹰算法优化的正则化极限学习机(RELM)的回归预测
智能算法研学社(Jack旭)
#正则极限学习机(RELM)智能优化算法应用算法回归数据挖掘
基于哈里斯鹰算法优化的正则化极限学习机(RELM)的回归预测文章目录基于哈里斯鹰算法优化的正则化极限学习机(RELM)的回归预测1.RELM原理2.预测问题求解3.基于哈里斯鹰算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN个
- 线性回归讲解L1和L2正则化
XiaoQiong.Zhang
Datamining人工智能机器学习数据挖掘
假设我们有一个线性回归问题:用房屋的面积(size)和房龄(age)两个特征来预测房价(price)。特征:size(面积,平方米),age(房龄,年)目标:price(价格,万元)1.没有正则化的普通线性回归(最容易过拟合)模型的公式是:预测价格=w1*size+w2*age+b其中w1和w2是我们要学习的权重(也叫系数),b是偏置项(也叫截距)。模型的损失函数通常是最小均方误差:MSE=(1/
- 吴恩达机器学习笔记(1)—引言
大饼酥
人工智能机器学习人工智能吴恩达
目录一、欢迎二、机器学习是什么三、监督学习四、无监督学习一、欢迎机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。事实上,机器学习已广泛渗透进我们的日常生活。例如,每次你使用Google、Bing进行搜索,或用Facebook、Apple的图像识别功能识别朋友,甚至邮箱中的垃圾邮件过滤器,背后都离不开机器学
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc