- C++ PCL点云处理实战专栏
迅卓科技
C++PCL点云处理实战专栏c++开发语言
本次技术分享围绕C++与PCL库在工业点云处理中的工程化应用展开,结合电力、建筑、隧道等垂直领域的实际技术需求,分阶段解析点云处理的核心算法、开发实践与系统落地路径。内容涵盖:算法原理剖析:深入解析PCL库核心机制(如点云滤波、特征提取、曲面重建等),结合数学原理与代码实现逻辑,建立工业级点云处理的算法认知体系。动态库开发实践:探讨工业场景下点云处理工具链的工程化封装(如点云分割、三维建模模块),
- 量化投资|现金流折现(DCF)模型全解析:从理论到实践
AI量化价值投资入门到精通
网络服务器运维ai
量化投资|现金流折现(DCF)模型全解析:从理论到实践关键词:量化投资、DCF模型、现金流折现、估值方法、财务建模、投资决策、Python实现摘要:本文全面解析现金流折现(DCF)模型在量化投资中的应用。从基础理论到实践操作,详细讲解DCF模型的核心概念、数学原理、Python实现以及实际应用场景。文章包含完整的财务建模流程、参数估计方法、敏感性分析技巧,并通过一个上市公司估值案例展示如何将理论应
- 区块链+金融科技应用场景
程序员大叔日记
区块链给社会带来的几大变化;第一个是机器信任从信息化互联网到价值互联网,无需中心化信任的算法信任,通过数学原理而非中心化的低成本建立信用,接近零成本建立前所未有的大型合作网络;第二个是价值传递通过解决双花问题来解决价值传递,从个人信任、制度信任到机器信任的时代,共识产生信任,基于信任的交易产生信用,信用的流通产生价值,tokenomics(通证经济)带来价值吸纳,通证贯穿计算过程,融于计算;第三个
- Kafka 如何优雅实现 Varint 和 ZigZag 编码
ByteUtils是Kafka中一个非常基础且核心的工具类。从包名common.utils就可以看出,它被广泛用于Kafka的各个模块中。它的主要职责是提供一套高效、底层的静态方法,用于在字节缓冲区(ByteBuffer)、字节数组(byte[])以及输入/输出流(InputStream/OutputStream)中读写Java的基本数据类型。ZigZag编解码过程的数学原理详解康托尔对角线映射。
- [学习] 笛卡尔坐标系的任意移动与旋转详解
极客不孤独
学习算法信号处理
笛卡尔坐标系的任意移动与旋转详解文章目录笛卡尔坐标系的任意移动与旋转详解**1.笛卡尔坐标系基础****2.坐标变换原理****2.1平移变换****2.2旋转变换****3.组合变换**Python仿真与动态展示**动画说明**:**关键数学原理**:1.笛卡尔坐标系基础笛卡尔坐标系用(x,y)(x,y)(x,y)表示平面内任意点的位置,原点为(0,0)(0,0)(0,0)。几何图形可视为点的集
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 空间曲线正交投影及其距离计算的理论与实践
老歌老听老掉牙
python正交投影
引言:正交投影的几何本质在三维空间中,正交投影是一种基础而重要的几何变换,它将空间中的点沿特定方向映射到一个平面上。当我们考虑将空间曲线投影到由给定法向量n\mathbf{n}n定义的平面时,这一问题在计算机图形学、CAD/CAM系统和科学计算中具有广泛应用。本文将从数学原理、Python实现到距离计算的等价性问题,全面探讨这一几何操作的深层内涵。设空间曲线由参数方程r(t)=(x(t),y(t)
- Python量化实战:基于索提诺比率的价值投资策略回测
量化价值投资入门到精通
python网络开发语言ai
Python量化实战:基于索提诺比率的价值投资策略回测关键词:Python量化分析、索提诺比率、价值投资策略、回测框架、风险调整收益、下行风险、量化实战摘要:本文深入探讨如何利用Python构建基于索提诺比率(SortinoRatio)的价值投资策略,并通过完整的回测框架验证策略有效性。首先解析索提诺比率的数学原理与核心优势,对比传统夏普比率的差异;其次详细演示价值投资策略的构建步骤,包括低估值因
- [学习] Hilbert变换:从数学原理到物理意义的深度解析与仿真实验(完整实验代码)
极客不孤独
学习概率论信号处理python数学建模
Hilbert变换:从数学原理到物理意义的深度解析与仿真实验文章目录Hilbert变换:从数学原理到物理意义的深度解析与仿真实验一、数学原理二、作用与物理意义1.构造解析信号2.相位移动特性3.应用场景三、仿真实验实验1:正弦信号的Hilbert变换实验2:调幅信号的Hilbert变换四、结论Hilbert变换是信号处理领域中一项经典而强大的工具,广泛应用于瞬时频率分析、调制解调、相位提取等场景。
- 深入解析 SymPy 中的符号计算:导数与变量替换的实践指南
老歌老听老掉牙
pythonsympy
在符号计算领域,SymPy作为Python的核心代数库,为数学推导提供了强大支持。然而,当处理复杂表达式时,用户常遇到两个典型挑战:函数导数的正确计算和变量的有效替换。本文将深入探讨这些问题,提供专业解决方案,并揭示其背后的数学原理函数导数的正确计算方法问题本质分析在SymPy中计算导数时,常见错误是将函数视为独立符号而非变量依赖关系。考虑以下情景:h=symbols('h')R_h=symbol
- 华为OD 面试手撕真题目录
无限码力
华为OD面试手撕代码真题合集华为od面试华为OD面试手撕真题
华为OD面试手撕真题目录,收集的都是实际面试出现过的手撕代码真题,对于是力扣原题的我会在对应题目博客中给出对应对应链接,推荐自己写代码去通过。华为OD机试2025B卷真题题库目录|机考题库+算法考点详解目录序号题目名称考点1求1-n的最小公倍数数学原理2判断是IPV4还是IPV6字符串、模拟3旋转矩阵模拟4
- 波的时频分析方法——短时傅里叶变换(STFT)变换详解
DuHz
傅立叶分析数学建模信号处理信息与通信算法人工智能概率论
短时傅里叶变换:理论基础、数学原理与信号分析应用1.引言时频分析是现代信号处理的核心技术之一,旨在同时描述信号在时间和频率域的局部特性。传统的傅里叶变换虽然能够完美描述信号的频域特征,但其全局性质使其无法处理非平稳信号的时变特性。短时傅里叶变换通过引入窗函数的概念,在保持傅里叶变换优良性质的同时,实现了时频域的局部化分析,为非平稳信号处理提供了重要的理论工具。STFT自1946年由Gabor提出以
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- 博弈算法
有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够取胜。(一)巴什博奕(BashGame):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。显然,如果n=m+1,那么由于一次最
- 【华为机试】HJ61 放苹果
不爱熬夜的Coder
算法华为机试golang华为golang算法面试
文章目录HJ61放苹果描述输入描述输出描述示例1示例2解题思路算法分析问题本质分析状态定义与转移递推关系详解动态规划表构建算法流程图示例推导过程代码实现思路时间复杂度分析关键优化点边界情况处理递归解法对比实际应用场景测试用例分析算法特点数学原理完整题解代码HJ61放苹果描述我们需要将m个相同的苹果放入n个相同的盘子中,允许有的盘子空着不放。求解有多少种不同的分法。输入描述输入两个整数m,n(0B[
- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- 《扩散模型:AI图像生成革命背后的魔法》
Liudef06小白
人工智能人工智能
文章目录摘要引言一、扩散模型的基本概念与发展历程二、扩散模型的数学原理与工作机制三、扩散模型在图像生成中的革命性突破四、扩散模型面临的挑战与未来发展方向五、结论摘要本文系统阐述了扩散模型在AI图像生成领域的革命性作用及其核心原理。首先,梳理了扩散模型的基本概念、发展脉络及其相较于GANs、VAEs等传统生成模型的优势。其次,深入解析了其基于马尔可夫链和变分推断的数学基础,以及前向扩散/反向生成的核
- 直线插补动画引擎:从数学原理到C#实现——用代码绘制动态几何艺术
墨夶
C#学习资料c#算法开发语言
一、直线插补核心算法解析1.1DDA算法数学原理//////DDA算法实现直线插补///publicclassLineInterpolator{privatePointF_currentPoint;privatePointF_endPoint;privatefloat_stepSize;privatefloat_dx,_dy;privatefloat_xIncrement,_yIncrement;
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- 【零基础学AI】第27讲:注意力机制(Attention) - 机器翻译实战
1989
0基础学AI人工智能机器翻译自然语言处理pythontensorflow机器学习神经网络
本节课你将学到理解注意力机制的核心思想掌握注意力计算的数学原理实现基于注意力机制的Seq2Seq模型构建英语到法语的神经翻译系统开始之前环境要求Python3.8+需要安装的包:tensorflow==2.8.0numpy==1.21.0matplotlib==3.4.0pandas==1.3.0前置知识RNN/LSTM原理(第26讲)序列数据处理(第26讲)自然语言处理基础(第14讲)核心概念为
- 【一起来学AI大模型】支持向量机(SVM):核心算法深度解析
运器123
AI大模型支持向量机机器学习人工智能ai大数据AI编程算法
一、算法核心思想支持向量机(SVM)是一种强大的监督学习算法,核心思想是通过寻找最优超平面实现分类或回归:分类目标:找到能最大化两类数据间隔的超平面回归目标:找到包含最多数据点的ε带关键概念图解超平面:w·x+b=0/\/\+1|支持向量|-1|●●||●●||●●||_________________|最大间隔(margin)二、数学原理与优化问题1.线性可分情况目标函数:\min_{w,b}\
- ShaderGraph节点解析(136):矩形节点(Rectangle Node)详解
小李也疯狂
#UnityShaderGraphRectangle
目录一、节点功能概述二、端口详解三、控制选项四、技术原理解析4.1数学原理(距离场计算)4.2生成代码解析4.3视觉特性五、应用场景与实战案例5.1UI元素(矩形按钮/面板)场景:在UI中生成无纹理的矩形按钮或面板,支持动态调整大小和圆角(配合其他节点)5.2材质纹理(网格/条纹)场景:为材质添加矩形网格或条纹纹理(如布料格子、屏幕像素感)5.3粒子形状(矩形粒子/条纹)场景:控制粒子的形状为矩形
- 【数据分析】Python实现线性回归和多元线性回归(全代码)
干了这一碗BUG
线性回归回归算法
老规矩,涉及到的数学原理,想深入了解的可以自行查阅相关资料,这里直接上干货用Python实现。目录逻辑回归中涉及的术语线性回归Python实现多元线性回归Python实现逻辑回归中涉及的术语以下是逻辑回归中一些常见的术语:自变量:应用于因变量预测的输入特征或预测因子。因变量:逻辑回归模型中的目标变量,即我们试图预测的变量。逻辑函数:用于表示自变量和因变量之间关系的公式。逻辑函数将输入变量转换为0到
- 深入解析VAE:从理论到PyTorch实战,一步步构建你的AI“艺术家”
电脑能手
人工智能深度学习python
摘要:你是否好奇AI如何“凭空”创造出从未见过的人脸或画作?变分自编码器(VAE)就是解开这一谜题的关键钥匙之一。本文将带你从零开始,深入浅出地剖析VAE的迷人世界。我们将用生动的比喻解释其核心思想,拆解其背后的数学原理(KL散度与重参数技巧),并最终用PyTorch代码手把手地构建、训练和可视化一个完整的VAE模型。无论你是初学者还是有一定经验的开发者,相信这篇文章都能让你对生成模型有一个全新的
- Python 借助 Matplotlib 绘制分形图形的诀窍
Python编程之道
pythonmatplotlib信息可视化ai
Python借助Matplotlib绘制分形图形的诀窍关键词:Python,Matplotlib,分形图形,递归算法,数据可视化,数学艺术,计算机图形学摘要:本文深入探讨了使用Python和Matplotlib库绘制分形图形的核心技术。从分形数学原理入手,详细解析了多种经典分形图形的生成算法,包括曼德勃罗集、朱利亚集、科赫雪花、谢尔宾斯基三角形等。文章提供了完整的Python实现代码,结合Matp
- 【SNN脉冲神经网络2】AdEx神经网络软件仿真
XvnNing
SNN脉冲神经网络神经网络人工智能深度学习
本文使用AdEx神经元搭建一个完整的神经网络来进行生物神经脉冲现象的仿真。主要的目的是为了验证数学原理,因此只调用的numpy函数包。对应的代码例程如下:1.导入所需的Python函数库importnumpyasnpimportmatplotlib.pyplotaspltimportreimportos2.定义均值函数以及一些常用函数defbin_data(data):try:returnnp.m
- [学习]M-QAM的数学原理与调制解调原理详解(仿真示例)
M-QAM的数学原理与调制解调原理详解QAM(正交幅度调制)作为现代数字通信的核心技术,其数学原理和实现方法值得深入探讨。本文将分为数学原理、调制解调原理和实现要点三个部分进行系统阐述。文章目录M-QAM的数学原理与调制解调原理详解一、数学原理二、调制原理三、解调原理四、实现要点五、16QAM的Python仿真实现5.1完整仿真代码5.2关键代码解析5.3仿真结果分析六、性能优化方向七、MATLA
- LLM大模型命名规则与部署硬件实践手册
文章目录一、理论基础:从信息编码到系统设计1.1命名系统的信息论基础1.2硬件架构与模型运行的关系1.3量化技术的数学原理二、国际主流模型命名规则深度解析2.1OpenAI:极简主义与功能导向2.2AnthropicClaude:诗意命名的技术内涵2.3GoogleGemini:统一品牌下的分层架构2.4MetaLlama:开源社区的透明化命名三、国内主流模型命名规则与文化内涵3.1百度文心:知识
- 强化学习【chapter0】-学习路线图
明朝百晓生
算法人工智能机器学习
前言:主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10:阅读论文(OpenAISpinningUp/RLlib文档)Chapter1:基
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比