- JVM 内存模型深度解析:原子性、可见性与有序性的实现
练习时长两年半的程序员小胡
JVM深度剖析:从面试考点到生产实践jvmjava内存模型
在了解了JVM的基础架构和类加载机制后,我们需要进一步探索Java程序在多线程环境下的内存交互规则。JVM内存模型(JavaMemoryModel,JMM)定义了线程和主内存之间的抽象关系,它通过规范共享变量的访问方式,解决了多线程并发时的数据一致性问题。本文将从内存模型的核心目标出发,详解原子性、可见性、有序性的实现机制,以及volatile、synchronized等关键字在其中的作用。一、J
- 深入理解汇编语言子程序设计与系统调用
网安spinage
汇编语言开发语言汇编算法
本文将全面解析汇编语言中子程序设计的核心技术以及系统调用的实现方法,涵盖参数传递的多种方式、堆栈管理、API调用等关键知识点,并提供实际案例演示。一、子程序设计:参数传递的艺术1.寄存器传参:高效简洁.386.modelflat,stdcalloptioncasemap:none.dataxdd5;定义变量ydd6sumdd?.code;函数定义:addxy1addxy1procpushebpmo
- D124:如何训练独立思考力?
大栗子_
当我们要判断一个理论或者思想是否正确,需要有三个层次,分别是体验、解释和分析。首先看体验。很多时候,我们会相信“听上去、感觉是对的”的事情。我们之前讲的太空笔的故事之所以大多数人都认为是对的,就是有一些看似真实的关键词,比如美国,NASA,设计等,这些词看起来非常权威,但是离我们又遥远,这时候我们的大脑就会放松警惕了。于是,我们毫不犹豫就接受了。说到这里,你有没有发现之前的电视广告中的各种高让我们
- 元宇宙中的视觉技术:虚拟化身与场景生成
xcLeigh
计算机视觉CV元宇宙虚拟化身场景生成AIGC数字孪生
元宇宙中的视觉技术:虚拟化身与场景生成前言一、元宇宙与视觉技术的深度关联1.1元宇宙概念深度剖析1.2视觉技术:元宇宙的“灵魂之窗”二、虚拟化身:数字世界的“第二自我”2.1虚拟化身技术的深度解析2.1.1核心技术构成2.1.2技术实现原理与流程2.2虚拟化身的应用领域及案例展示2.2.1游戏娱乐领域2.2.2教育培训领域三、场景生成:构建元宇宙的虚拟天地3.1场景生成技术全景透视3.1.1关键技
- 听覃杰007写作精进课第五天分享心得
曹端春
早上听覃老大直播007写作精进课程第五天,获益良多。关于写作的黄金三法:多读,多写,多动,确实说到了写作的真谛。一,多读,扩大阅读面,精读相关经典作家的经典作品,逐步构建自己的知识体系;阅读方面推荐指读法,这是聪明人用的笨办法,读本离眼睛远些,可让视野更开阔些,能提高30%的速度;二,多写,象高手一样靠汗水写作,写不出来硬写,找准自己的定位,在一个行业内了解100个关键词,输出糸列文章,并且多分享
- 基于DeepSeek的下一代大型游戏开发革命:架构、核心技术与项目管理实践
Liudef06小白
特殊专栏人工智能AIGC架构人工智能deepseek
基于DeepSeek的下一代大型游戏开发革命:架构、核心技术与项目管理实践DeepSeek大模型正重塑游戏开发范式,本文将深入解析如何利用这一革命性技术构建下一代大型游戏,涵盖从架构设计到项目管理的全流程实践。目录DeepSeek游戏引擎核心架构1.1神经符号系统融合架构1.2动态世界生成引擎智能NPC与剧情系统2.1角色人格建模技术2.2动态叙事生成算法大型项目管理体系3.1敏捷-AI混合开发流
- 基于Python的AI健康助手:开发与部署全攻略
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构python人工智能开发语言ai
基于Python的AI健康助手:开发与部署全攻略关键词:Python、AI健康助手、机器学习、自然语言处理、Flask、部署、健康管理摘要:本文将详细介绍如何使用Python开发一个AI健康助手,从需求分析、技术选型到核心功能实现,再到最终部署上线的完整过程。我们将使用自然语言处理技术理解用户健康咨询,通过机器学习模型提供个性化建议,并展示如何用Flask框架构建Web应用接口。文章包含大量实际代
- Flutter权限插件详解:permission_handler使用指南
AI移动开发前沿
AI移动端开发宝典flutterai
Flutter权限插件详解:permission_handler使用指南关键词:Flutter、权限插件、permission_handler、权限管理、移动开发摘要:本文围绕Flutter开发中常用的权限插件permission_handler展开详细介绍。首先阐述了在Flutter应用开发中处理权限的背景和重要性,接着深入解析permission_handler的核心概念、架构以及工作原理,通
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- 神经形态计算如何突破冯·诺依曼架构限制?
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构架构ai
神经形态计算如何突破冯·诺依曼架构限制?关键词:神经形态计算、冯·诺依曼架构、内存墙、存算一体、脉冲神经网络、类脑芯片、低功耗计算摘要:本文将从“冯·诺依曼架构的前世今生”讲起,用“图书馆管理员搬书”的生活案例类比其核心矛盾,再通过“人脑神经元工作模式”的比喻引入神经形态计算的核心原理。我们将一步步拆解冯·诺依曼架构的三大限制(内存墙、高功耗、非结构化数据处理弱),并对应解析神经形态计算的三大突破
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 数据中台中的数据科学工作台:Jupyter集成方案
AI大数据智能洞察
大数据与AI人工智能jupyter信息可视化ideai
数据中台中的数据科学工作台:Jupyter集成方案关键词:数据中台、数据科学工作台、JupyterNotebook、数据科学、机器学习、数据可视化、协作开发摘要:本文深入探讨了在数据中台架构中集成JupyterNotebook作为数据科学工作台的完整解决方案。我们将从数据中台的基本概念出发,详细分析Jupyter在数据科学工作流中的核心作用,介绍多种集成方案和技术实现细节,并通过实际案例展示如何构
- 使用Python和Gradio构建实时数据可视化工具
PythonAI编程架构实战家
信息可视化python开发语言ai
使用Python和Gradio构建实时数据可视化工具关键词:Python、Gradio、数据可视化、实时数据、Web应用、交互式界面、数据科学摘要:本文将详细介绍如何使用Python和Gradio框架构建一个实时数据可视化工具。我们将从基础概念开始,逐步深入到核心算法实现,包括数据处理、可视化技术以及Gradio的交互式界面设计。通过实际项目案例,读者将学习如何创建一个功能完整、响应迅速的实时数据
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 程序员职业发展:元学习比技术更重要?
AI天才研究院
AI人工智能与大数据学习ai
程序员职业发展:元学习比技术更重要?关键词:程序员职业发展、元学习、技术、学习能力、知识更新摘要:在快速发展的科技领域,程序员面临着技术不断更新换代的挑战。本文深入探讨了在程序员职业发展中,元学习与技术的重要性对比。通过分析元学习的核心概念、其在职业发展中的作用,结合技术的特点和局限,阐述了元学习为何可能在长远的职业发展中更为关键。同时,提供了实际的案例和操作步骤,介绍了相关的工具和资源,最后对未
- Amazon广告投放:如何精准筛选并添加关键词?
新置元
人工智能亚马逊广告amazon
在亚马逊广告投放领域,关键词的选择是影响广告效果的核心要素之一。一个精准的关键词策略不仅能够提升广告的曝光度,还能确保产品能够被真正的目标受众看到,从而实现更高的转化率。然而,关键词的筛选并不是一个简单的操作,它需要结合数据分析、市场趋势和消费者行为模式进行科学的规划。一、关键词筛选的必要性:为什么精准匹配如此重要?1.提升广告投放的精准度关键词的精准度决定了广告是否能够投放给真正有购买意愿的用户
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- 建筑施工场景下漏检率↓76%!陌讯多模态融合算法在工程安全监控的落地实践
2501_92722744
大数据算法目标跟踪人工智能计算机视觉目标检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:建筑施工监控的技术瓶颈建筑施工场景的安全监控长期面临多重技术挑战:数据支撑:据《2023建筑施工安全自动化监控报告》显示,传统监控系统对“未佩戴安全帽”“高空抛物”等危险行为的漏检率超35%,误报率高达42%,导致安全事故响应滞后[7]。场景难点:工地存在强光直射(正午阳光)、动态遮挡(塔吊/
- 大厂都在用的前端缓存策略,你掌握了吗?
AI架构全栈开发实战笔记
前端缓存ai
大厂都在用的前端缓存策略,你掌握了吗?关键词:前端缓存、HTTP缓存、ServiceWorker、CDN缓存、缓存策略、性能优化、浏览器缓存摘要:本文将深入探讨前端开发中常用的缓存策略,从浏览器缓存到ServiceWorker,从HTTP缓存头到CDN缓存,全面解析大厂都在使用的高效缓存技术。通过生动的比喻和实际代码示例,帮助开发者理解并掌握这些提升Web应用性能的关键技术。背景介绍目的和范围本文
- 问句
柚橙妈咪
张艳焦点网络中级七期坚持分享第189天回顾一下今天读到的问句。开放问句:用来了解资料,找出关键词,引导谈话朝向正向,解决的方向。奇迹问句:问题解决了,你会有什么改变?谁会看到?假设问句:假设问题解决,跟现在会有什么不同?关注到现在的一小步。差异问句:问题解决跟未解决时的差别在哪?(估计我记得不准确,怎么和上一个一样呢?)例外问句:问题没有发生或者比较好时的情况,引导来访者寻找资源和力量。评量问句:
- B 站关键词排名提高避坑:这些操作反降权
zhuzhuyaolai
小程序微信小程序微信公众平台生活搜索引擎
在B站,关键词排名对视频曝光和账号发展极为关键。不少UP主绞尽脑汁提升排名,却因一些错误操作不仅没达到目的,反而让账号权重降低。今天,就为大家盘点那些导致降权的“坑”,助大家在B站运营路上少走弯路。一、关键词堆砌,自毁前程有些UP主认为,在标题、简介、标签中大量堆砌关键词,就能提升搜索排名,实则大错特错。首先,严重影响用户体验,生硬的关键词堆砌让标题和简介晦涩难懂,用户看到这样的内容,很难产生点击
- 微信小程序SEO指南:如何提升搜索排名与自然流量?
即可皕
微信小程序微信小程序小程序
在微信生态内,每天有超过10亿次搜索行为发生。当用户搜索“外卖”“健身课程”或“旅行攻略”时,如何让你的小程序脱颖而出?本文结合微信官方规则与实战案例,拆解从0到1的小程序SEO优化全流程。一、基础优化:让小程序“被看见”1.名称:搜索流量的“黄金关键词”公式:品牌词+行业词+地域词(如:XX瑜伽·北京朝阳店)禁忌:避免生僻字/特殊符号(如“健身达人”会降低搜索匹配)技巧:微信指数(https:/
- 周检视(2019年1月21日至1月27日)
其乐融蓉蓉
没有记录就没有发生。本周的关键词是住院。1,住院修养七天,把自己心中的担忧去除。2,阅读《好妈妈胜过好老师》60页3,看电影《肖生克的救赎》等评分很高的电影4,17号参加易效能天使班小组会一次,并做记录5,本周累计运动180分钟,消耗热量648千卡6,制作了2019年度计划图片发自App下周计划1-每天阅读《好妈妈胜过好老师》40页,一本书读完才可以换另外一本书2-中餐和晚餐后各走路2公里。早餐后
- 云端渲染:重塑影视、游戏与设计行业的算力革命
导言:云端渲染技术通过将繁重的图形计算任务迁移至云端强大的计算集群,有效突破了传统渲染对高性能本地硬件和漫长等待周期的依赖,显著降低了制作成本与门槛。它正日益成为驱动影视、游戏及设计行业创新的核心技术。本文将深入解析云端渲染的技术原理,并探讨其如何深刻变革这三大行业的格局与未来。一、云端渲染的技术原理:解构算力革新云端渲染,其核心在于将高负载的图形处理任务——如复杂的3D建模、动画特效、光影计算及
- 微信下拉词优化实战指南,马上行动
在微信生态的流量竞争中,下拉词优化是低成本获取精准流量的有效途径。不同于理论层面的分析,实战操作需要明确的行动步骤和可落地的执行方法。以下这份实战指南,将带你快速启动微信下拉词优化工作。精准筛选关键词,明确优化方向行动的第一步是锁定目标关键词。打开微信搜索框,输入与账号领域相关的基础词汇,记录下拉列表中已有的热门词汇,这些词汇反映了用户的真实搜索习惯。同时,结合账号的核心业务,列出3-5个最具代表
- 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
由数入道
人工智能剪枝人工智能算法模型压缩量化知识蒸馏二值化
一、量化(Quantization)量化的目标在于将原始以32位浮点数表示的模型参数和中间激活,转换为低精度(如FP16、INT8、甚至更低位宽)的数值表示,从而在减少模型存储占用和内存带宽的同时,加速推理运算,特别适用于移动、嵌入式和边缘计算场景。1.1概念与目标基本思想将高精度数值离散化为低精度表示。例如,将FP32权重转换为INT8,可降低内存需求约4倍,同时在支持低精度运算的硬件上加速计算
- 不会PS也不会建模,却想把敦煌鸣沙山塞进小方块里!
自律的音律
掐指一算,好像很久没出特殊玩法的教程了~刚好前几天有小伙伴提问:有没有立体图表可以参考一下?由此延伸到以前发的一篇文章,里面整合了一些高质量的立体图表:我知道,PPT自带的图表你已经看腻了,是时候养养眼啦!那么问题来了,文章中的这种效果,要是只会PPT能不能做?经过@隔壁家老廖的提醒,通过关键词microworld找到了一些参考图:仔细想了想,似乎也没有很难,主要是用到了裸眼3D效果,结合切面光影
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro