实验名称:动态分区分配方式模拟

实验名称:动态分区分配方式模拟

实验目的

进一步加深对动态分区分配管理方式的理解;掌握动态分区分配方式使用的数据结构、分配算法和回收算法

实验内容

编写C语言程序,模拟实现首次/最佳/最坏适应算法的内存块分配和回收,要求每次分配和回收后显示出空闲分区和已分配分区的情况。假设初始状态下,可用的内存空间为640K。

数据结构设计
  1. 空闲分区表:Unallocated Table
index address end size
0 0 639 640
  1. 已分配分区表:Allocated Table
index address end size
0 630 639 10
分配算法设计
  1. 首次适应算法
  2. 最佳适应算法
  3. 最差适应算法

根据选择的分配算法决定空闲分区表的排序方式

回收算法设计

实验名称:动态分区分配方式模拟_第1张图片

  1. 上下都无空分区
  2. 有上空分区无下空分区
  3. 无上空分区有下空分区
  4. 上下分区都为空分区

代码:

#include
#include
#include
#include
#define MAX 640

struct node  //定义分区
{
  int address, size;
  struct node *next;
};
typedef struct node RECT;

/*-----函数定义-------*/
void firstfit(RECT *head,int application); //针对首次适应分配算法分配分区
void bestfit(RECT *head,int application);  //针对最佳适应分配算法分配分区
void worstfit(RECT *head,int application);  //针对最坏适应分配算法分配分区
int backcheck(RECT *head,RECT *back1); //合法性检查
void recycle(RECT *head,RECT *heada,RECT *back1); //回收分区
void print(RECT *head);   //输出已分配分区表或空闲分区
/*-----变量定义-------*/
RECT *head,*heada,*back,*assign1,*p;
int application1,maxblocknum;
char way;  //用于定义分配方式:首先适应(f)、最佳适应(b)、最差适应(w)
int main()
{
  char choose;
  int check;
  RECT *allocated;  //
  head=malloc(sizeof(RECT)); //建立空闲分区表的初始状态
  p=malloc(sizeof(RECT));
  head->size=MAX;
  head->address=0;
  head->next=p;
  maxblocknum=1; //初始只有一块空闲区
  p->size=MAX;
  p->address=0;
  p->next=NULL;
  print(head);  //输出空闲分区表的初始状态
  printf("Enter the way (first, best or worst (f/b/w))\n");
  scanf("%c",&way);
  heada=malloc(sizeof(RECT)); //建立已分配分区表的初始状态
  heada->size=0;
  heada->address=0;
  heada->next=NULL;
  //print(heada);  //输出空闲分区表的初始状态
  //way='f';
  do
  {
    printf("Enter the allocate or reclaim (a/r),or press other key to exit.\n");
    scanf(" %c",&choose);     //选择分配或回收
    if(tolower(choose)=='a')                 //a为分配
    {
      printf("Input application:\n");
      scanf("%d",&application1);              //输入申请空间大小
        if(tolower(way)=='f')
          firstfit(head,application1);    //首先适应算法分配
        else if(tolower(way)=='b')
          bestfit(head,application1);     //调用最佳适应分配算法函数分配内存
        else
          worstfit(head,application1);    //最坏适应算法分配
      if (assign1->address==-1)               //分配不成功
        printf("Too large application! Allocation fails! \n\n");
      else{//分配成功
          printf("Allocation Success! ADDRESS=%5d\n",assign1->address);
        printf("\n*********Unallocated Table**********\n");
        print(head);  //输出
        printf("\n*********Allocated Table************\n");
          print(heada);
      }
    }
    else if (tolower(choose)=='r')          //回收内存
    {
      back=malloc(sizeof(RECT));
      printf("Input address and Size:\n");
      scanf("%d%d",&back->address,&back->size);//输入回收地址和大小
      check=backcheck(head,back);
      if (check==1)
      {
        recycle(head,heada,back);
        printf("\n*********Unallocated Table**********\n");
        print(head);  //输出
        printf("\n*********Allocated Table************\n");
        print(heada);
       }
    }
  }while(tolower(choose)=='a'||tolower(choose)=='r');
  exit(0);
} //main() end.

/*-------内存回收函数,back1为回收节点到地址-------*/
void recycle(RECT *head,RECT *heada,RECT *back1)
{
  RECT *before, *after, *back2;
  int insert = 0, del;
  back2 = malloc(sizeof(RECT));
  back2->address = back1->address;
  back2->size = back1->size;
  back2->next = back1->next;
  before = head;
  after = head->next;

  if (head->next == NULL) // 没有空闲区,直接回收
  {
    head->size = back1->size;
    head->next = back1;
    maxblocknum++;
    back1->next = NULL;
  }
  else
  {
    while (!insert&&after!=NULL)                                 // 遍历空闲区
    {
      if (back1->address == after->size + after->address) /*要回收的内存在当前空闲区之后,与上一块合并*/
      {//第一种情况,回收区与相邻低地址合并
        after->size+=back1->size;
        insert=1;
        // before->next = after->next;
        // back->size = after->size + back1->size;
        // free(after);
        // after = NULL;
      }else if(back1->address+back1->size==after->address)
      { //第二种情况,回收区与相邻高地址合并
        after->size+=back1->size;
        after->address=back1->address;
        insert=1;
      }else if(before->address<back1->address&&after->address>back1->address)
      { //第三种情况,回收区与相邻的高地址、低地址合并,被夹在中间
        before->size+=back1->size+after->size;
        insert=1;
      }
        after = after->next;
        before = before->next;
    }

    //第四种情况,回收区独自一块,需要在空闲表中新增一项
    before = head; /*将回收节点插入到合适到位置*/
    after = head->next;
    do
    {
      if (after == NULL)
      {
        before->next = back1;
        back1->next = after;
        insert = 1;
      }
      else
      {
        before = before->next;
        after = after->next;
      }
    } while (!insert);

    if (head->size < back1->size) /*修改最大块值和最大块数*/
    {
      head->size = back1->size;
      maxblocknum++;
    }
    else
    {
      if (head->size == back1->size)
        maxblocknum++;
    }
  }

  // 修改已分配分区表,删除相应节点
  before = heada;
  after = heada->next;
  del = 0;
  while (!del &&after != NULL) // 1,循环在已删除或者遍历结束时退出,将回收区从已分配分区表中删除
  {
    if ((after->address == back2->address) && (after->size == back2->size))
    {
      before->next = after->next;
      free(after);
      del = 1;
    }
    else
    {
      before = before->next;
      after = after->next;
    }
  }
  heada->size--;
}

/*------------------首次适应分配算法------------*/
void firstfit(RECT *head,int application)
{
  RECT *after, *before, *assign;
  assign = malloc(sizeof(RECT)); // 申请分配空间
  assign->size = application;
  assign->next = NULL;
  if (application > head->size || application < 0)
    assign->address = -1; // 申请无效
  else
  {
    before = head;
    after = head->next;
    while (after->size < application) // 遍历链表,查找合适到节点
    {
      before = before->next;
      after = after->next;
    }
    if (after->size == application) // 若节点大小等于申请大小则完全分配
    {
      if (after->size == head->size)
        maxblocknum--;
      before->next = after->next;       // 指向后面的空闲区
      assign->address = after->address; // 将这个同样大小的地址直接赋给分配的对象
      free(after);
    }
    else
    {
      if (after->size == head->size) // 这个可分配空间等于剩余总的空闲空间
        maxblocknum--;
      after->size = after->size - application;        // 大于申请空间则截取相应大小分配
      assign->address = after->address + after->size; // 分配靠后的地址
    }

    if (maxblocknum == 0) // 修改最大数和头节点
    {
      before = head;
      head->size = 0;
      maxblocknum = 1;
      while (before != NULL) // 遍历空闲区
      {
        if (before->size > head->size)
        {
          head->size = before->size;
          maxblocknum = 1;
        }
        else if (before->size == head->size)
          maxblocknum++;
        before = before->next;
      }
    }
  }
  assign1 = assign;

  // 修改已分配分区表,添加节点
  after = heada;
  while (after->next != NULL)
    after = after->next;
  after->next = assign;
  heada->size++;
}

/*-----------------最佳适应分配算法--------------*/
void bestfit(RECT *head,int application)
{
  RECT *after, *before, *assign;
  assign = malloc(sizeof(RECT)); // 申请分配空间
  assign->size = application;
  assign->next = NULL;
  if (application > head->size || application < 0)
    assign->address = -1; // 申请无效
  else
  {
    before = head;
    RECT* ptr = head->next;
    int tmp=0;
    //找到第一块最合适的空闲分区,即空间大于application的最小分区
    while (ptr!=NULL) // 遍历链表,查找合适到节点
    {
      if(ptr->size>=application){
        if(!tmp||ptr->size<tmp){
          after=ptr;
          tmp=ptr->size;
        }
      }
      ptr=ptr->next;
    }
    if (after->size == application) // 若节点大小等于申请大小则完全分配
    {
      if (after->size == head->size)
        maxblocknum--;
      before->next = after->next;       // 指向后面的空闲区
      assign->address = after->address; // 将这个同样大小的地址直接赋给分配的对象
      free(after);
    }
    else
    {
      if (after->size == head->size) // 这个可分配空间等于剩余总的空闲空间
        maxblocknum--;
      after->size = after->size - application;        // 大于申请空间则截取相应大小分配
      assign->address = after->address + after->size; // 分配靠后的地址
    }

    if (maxblocknum == 0) // 修改最大数和头节点
    {
      before = head;
      head->size = 0;
      maxblocknum = 1;
      while (before != NULL) // 遍历空闲区
      {
        if (before->size > head->size)
        {
          head->size = before->size;
          maxblocknum = 1;
        }
        else if (before->size == head->size)
          maxblocknum++;
        before = before->next;
      }
    }
  }
  assign1 = assign;

  // 修改已分配分区表,添加节点
  after = heada;
  while (after->next != NULL)
    after = after->next;
  after->next = assign;
  heada->size++;
}


/*-----------------最坏适应分配算法--------------*/
void worstfit(RECT *head,int application)
{
RECT *after, *before, *assign;
  assign = malloc(sizeof(RECT)); // 申请分配空间
  assign->size = application;
  assign->next = NULL;
  if (application > head->size || application < 0)
    assign->address = -1; // 申请无效
  else
  {
    before = head;
    RECT* ptr = head->next;
    int tmp=0;
    //找到最大的空闲分区进行分配
    while (ptr!=NULL) // 遍历链表,查找合适到节点
    {
      if(ptr->size>=application){
        if(ptr->size>tmp){
          after=ptr;
          tmp=ptr->size;
        }
      }
      ptr=ptr->next;
    }
    if (after->size == application) // 若节点大小等于申请大小则完全分配
    {
      if (after->size == head->size)
        maxblocknum--;
      before->next = after->next;       // 指向后面的空闲区
      assign->address = after->address; // 将这个同样大小的地址直接赋给分配的对象
      free(after);
    }
    else
    {
      if (after->size == head->size) // 这个可分配空间等于剩余总的空闲空间
        maxblocknum--;
      after->size = after->size - application;        // 大于申请空间则截取相应大小分配
      assign->address = after->address + after->size; // 分配靠后的地址
    }

    if (maxblocknum == 0) // 修改最大数和头节点
    {
      before = head;
      head->size = 0;
      maxblocknum = 1;
      while (before != NULL) // 遍历空闲区
      {
        if (before->size > head->size)
        {
          head->size = before->size;
          maxblocknum = 1;
        }
        else if (before->size == head->size)
          maxblocknum++;
        before = before->next;
      }
    }
  }
  assign1 = assign;

  // 修改已分配分区表,添加节点
  after = heada;
  while (after->next != NULL)
    after = after->next;
  after->next = assign;
  heada->size++;
}

/*-----------------打印输出链表--------------*/
void print(RECT *output)
{
  RECT *before;
  int index;
  before=output->next;
  index=0;
  if(output->next==NULL)
    printf("NO part for print!\n");
  else
  {
    printf("index****address****end*****size**** \n");
    while(before!=NULL)
    {
      printf("------------------------------------\n");
      printf(" %-9d%- 9d%- 9d%- 9d\n",index,before->address,before->address+before->size-1,before->size);
      printf("------------------------------------\n");
      index++;
      before=before->next;
    }
  }
}

/*检查回收块到合法性,back1为要回收到节点地址*/
int backcheck(RECT *head,RECT *back1)
{
  RECT *before;
  int check=1;
  if(back1->address<0 || back1->size<0) check=0;  //地址和大小不能为负数
  before=head->next;
  while((before!=NULL)&&check) //地址不能和空闲区表中节点出现重叠
  if(((back1->address<before->address)&&(back1->address+back1->size>before->address))||((back1->address>=before->address)&&(back1->address<before->address+before->size)))
    check=0;
  else
    before=before->next;
  if(check==0) printf("Error input!\n");
  return check;
}

你可能感兴趣的:(操作系统,最佳适应算法,内存分配与回收,最坏适应算法,首次适应算法)