PCL教程-点云分割之平面模型分割

原文链接:Plane model segmentation — Point Cloud Library 0.0 documentation

基于RANSAC的基本检测算法虽然具有较高的鲁棒性和效率,但是目前仅针对平面,球,圆柱体,圆锥和圆环物种基本的基元。

在本次教程中,我们将学习对一组点云做简单的平面分割,也就是在点云中找到组成平面模型的所有点。

目录

程序代码

实验结果

 程序分析

步骤1:创建在同一个平面上的点云(z=1):

步骤2:设置几个平面外的点(z != 1)

步骤3:平面分割

步骤4:分割结果-系数因子

步骤5:分割结果-模型内点的下标

步骤6:打印结果并显示

CmakeLists.txt


程序代码

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include
#include
#include

int
main(int argc, char** argv)
{
	//原始点云
	pcl::PointCloud::Ptr cloud(new pcl::PointCloud);
	//平面上的点云
	pcl::PointCloud::Ptr cloud_inner(new pcl::PointCloud);	
	//平面外的点云
	pcl::PointCloud::Ptr cloud_outer(new pcl::PointCloud);
	
	//填充点云数据
	(*cloud).width = 15;
	(*cloud).height = 1;
	(*cloud).points.resize((*cloud).width * (*cloud).height);
	//生成数据
	for (size_t i = 0; i < (*cloud).points.size(); ++i)
	{
		(*cloud).points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
		(*cloud).points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
		//z 坐标始终为1,说明这些点位于同一个平面
		(*cloud).points[i].z = 1.0;
	}
	//设置几个局外点,三个平面外的点
	(*cloud).points[0].z = 200.0;
	(*cloud).points[3].z = -200.0;
	(*cloud).points[6].z = 400.0;
	std::cerr << "Point cloud data: " << (*cloud).points.size() << " points" << std::endl;
	for (size_t i = 0; i < (*cloud).points.size(); ++i)
		std::cerr <<"index:\t"<< i<<"\t" << (*cloud).points[i].x << "\t"
		<< (*cloud).points[i].y << "\t"
		<< (*cloud).points[i].z << std::endl;


	pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
	pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
	//创建分割对象
	pcl::SACSegmentation seg;
	//可选设置
	seg.setOptimizeCoefficients(true);
	//必须设置
	seg.setModelType(pcl::SACMODEL_PLANE);
	seg.setMethodType(pcl::SAC_RANSAC);
	seg.setDistanceThreshold(0.01);
	seg.setInputCloud(cloud);
	seg.segment(*inliers, *coefficients);

	//判断是否分割成功
	if (inliers->indices.size() == 0)
	{
		PCL_ERROR("Could not estimate a planar model for the given dataset.");
		return (-1);
	}
	std::cerr << std::endl << "Model coefficients: " << coefficients->values[0] << " "
		<< coefficients->values[1] << " "
		<< coefficients->values[2] << " "
		<< coefficients->values[3] << std::endl << std::endl;


	//根据分割结果填充平面内和平面外点云
	cloud_inner->width = inliers->indices.size();
	cloud_inner->height = 1;
	cloud_inner->points.resize(cloud_inner->width * cloud_inner->height);

	cloud_outer->width = cloud->points.size() - inliers->indices.size();
	cloud_outer->height = 1;
	cloud_outer->points.resize(cloud_outer->width * cloud_outer->height);

	//创建一个数组,大小为点云总数,初始化为0
	std::vector p_flag(cloud->points.size());

	//将平面内的点标记
	for (size_t i = 0; i < inliers->indices.size(); ++i)
		p_flag[inliers->indices[i]] = 1;

	for (size_t i = 0,j=0 ; i < (*cloud).points.size(); ++i)
	{
		//遍历,找出平面外的点
		if (p_flag[i] == 0)
		{
			cloud_outer->points[j].x = (*cloud).points[i].x;
			cloud_outer->points[j].y = (*cloud).points[i].y;
			cloud_outer->points[j].z = (*cloud).points[i].z;
			++j;
			std::cerr << "outer points index:\t" << i << "\t" << (*cloud).points[i].x << "\t"
				<< (*cloud).points[i].y << "\t"
				<< (*cloud).points[i].z << std::endl;
		}
	}

	//打印出平面外的点
	std::cerr << std::endl << "Outer points: " << cloud_outer->points.size() << std::endl;
	for (size_t i = 0; i < cloud_outer->points.size(); ++i)
	{
		std::cerr << "\t" << (*cloud_outer).points[i].x << "\t"
			<< (*cloud_outer).points[i].y << "\t"
			<< (*cloud_outer).points[i].z << std::endl;
	}

	//平面内的点
	std::cerr << "Model inliers: " << inliers->indices.size() << std::endl;
	for (size_t i = 0; i < inliers->indices.size(); ++i)
	{
		cloud_inner->points[i].x = (*cloud).points[inliers->indices[i]].x;
		cloud_inner->points[i].y = (*cloud).points[inliers->indices[i]].y;
		cloud_inner->points[i].z = (*cloud).points[inliers->indices[i]].z;
		std::cerr << "index:\t" << inliers->indices[i] << "\t" << (*cloud).points[inliers->indices[i]].x << "\t"
			<< (*cloud).points[inliers->indices[i]].y << "\t"
			<< (*cloud).points[inliers->indices[i]].z << std::endl;
	}

	//图形化显示
	//创建PCLVisualzer对象
	pcl::visualization::PCLVisualizer viewer("Plane Model Segmentation");

	int v1(1);
	int v2(2);
	
	//创建视角v1,v2
	viewer.createViewPort(0.0, 0.0, 0.5, 1.0,v1);
	viewer.createViewPort(0.5, 0.0, 1.0, 1.0,v2);
	//设置背景颜色为白色
	viewer.setBackgroundColor(255, 255, 255, v1);
	viewer.setBackgroundColor(255, 255, 255, v2);
	//添加直角坐标,放大1000倍
	viewer.addCoordinateSystem(1000,v1);
	viewer.addCoordinateSystem(1000,v2);
	
	//设置点云颜色
	pcl::visualization::PointCloudColorHandlerCustom cloud_origin(cloud, 255, 0, 0);
	pcl::visualization::PointCloudColorHandlerCustom cloud_in(cloud_inner, 255, 0, 0);
	pcl::visualization::PointCloudColorHandlerCustom cloud_out(cloud_outer, 0, 0, 255);


	viewer.addPointCloud(cloud, cloud_origin, "v1", v1);
	viewer.addPointCloud(cloud_outer, cloud_out, "v2", v2);
	viewer.addPointCloud(cloud_inner, cloud_in, "v3", v2);

	//设置点云的大小,point_size默认为1,这里设置为1000,突出显示
	viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1000,"v1",v1);
	viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1000,"v2",v2);
	viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1000,"v3",v2);
	viewer.spin();

	return (0);
}

实验结果

打印输出:

Point cloud data: 15 points
index:  0       1.28125 577.094 2
index:  1       197.938 828.125 1
index:  2       599.031 491.375 1
index:  3       358.688 917.438 -2
index:  4       842.562 764.5   1
index:  5       178.281 879.531 1
index:  6       727.531 525.844 4
index:  7       311.281 15.3438 1
index:  8       93.5938 373.188 1
index:  9       150.844 169.875 1
index:  10      1012.22 456.375 1
index:  11      121.938 4.78125 1
index:  12      9.125   386.938 1
index:  13      544.406 584.875 1
index:  14      616.188 621.719 1

Model coefficients: 0 0 1 -1

outer points index:     0       1.28125 577.094 2
outer points index:     3       358.688 917.438 -2
outer points index:     6       727.531 525.844 4

Outer points: 3
        1.28125 577.094 2
        358.688 917.438 -2
        727.531 525.844 4
Model inliers: 12
index:  1       197.938 828.125 1
index:  2       599.031 491.375 1
index:  4       842.562 764.5   1
index:  5       178.281 879.531 1
index:  7       311.281 15.3438 1
index:  8       93.5938 373.188 1
index:  9       150.844 169.875 1
index:  10      1012.22 456.375 1
index:  11      121.938 4.78125 1
index:  12      9.125   386.938 1
index:  13      544.406 584.875 1
index:  14      616.188 621.719 1
 

结果图:

 PCL教程-点云分割之平面模型分割_第1张图片

 PCL教程-点云分割之平面模型分割_第2张图片

左图为原始点云,右图为处理结果:红色为同一平面上的点,蓝色为平面外的点。

 程序分析

步骤1:创建在同一个平面上的点云(z=1):

//填充点云数据
	(*cloud).width = 15;
	(*cloud).height = 1;
	(*cloud).points.resize((*cloud).width * (*cloud).height);
	//生成数据
	for (size_t i = 0; i < (*cloud).points.size(); ++i)
	{
		(*cloud).points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
		(*cloud).points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
		//z 坐标始终为1,说明这些点位于同一个平面
		(*cloud).points[i].z = 1.0;
	}

步骤2:设置几个平面外的点(z != 1)

	//设置几个局外点,三个平面外的点
	(*cloud).points[0].z = 200.0;
	(*cloud).points[3].z = -200.0;
	(*cloud).points[6].z = 400.0;

步骤3:平面分割

	pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
	pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
	//创建分割对象
	pcl::SACSegmentation seg;
	//可选设置
	seg.setOptimizeCoefficients(true);
	//必须设置
	seg.setModelType(pcl::SACMODEL_PLANE);
	seg.setMethodType(pcl::SAC_RANSAC);
	seg.setDistanceThreshold(0.01);
	seg.setInputCloud(cloud);
	seg.segment(*inliers, *coefficients);

	//判断是否分割成功
	if (inliers->indices.size() == 0)
	{
		PCL_ERROR("Could not estimate a planar model for the given dataset.");
		return (-1);
	}

创建:pcl:`SACSegmentation `对象,设置模型和方法类型,还有设置距离阈值为0.01,它决定了必须离模型多近才会被认为是平面内的点。

在篇教程中,我们使用了RANSAC方法(pcl::SAC_RANSAC) ,因为Ransac的简单性的动机(其他强大的估算器用作基础并添加额外的更复杂的概念)。

步骤4:分割结果-系数因子

分割结果包括:模型内的点的下标以及该模型的系数因子。

比如一个平面的方程式为:aX + bY + cZ + d = 0

在此次实验中得出的系数因子为:0 0 1 -1

a=0 , b=0 , c=1, d=-1

 将平面上的点代入该方程即可验证结果为正确。

步骤5:分割结果-模型内点的下标

分割结果中包括在平面模型内的点的下标(在原始点云中),通过这个下标,就可以将平面内和平面外的点云分割开,单独显示。

 Model inliers: 12
index:  1       197.938 828.125 1
index:  2       599.031 491.375 1
index:  4       842.562 764.5   1
index:  5       178.281 879.531 1
index:  7       311.281 15.3438 1
index:  8       93.5938 373.188 1
index:  9       150.844 169.875 1
index:  10      1012.22 456.375 1
index:  11      121.938 4.78125 1
index:  12      9.125   386.938 1
index:  13      544.406 584.875 1
index:  14      616.188 621.719 1


	//根据分割结果填充平面内和平面外点云
	cloud_inner->width = inliers->indices.size();
	cloud_inner->height = 1;
	cloud_inner->points.resize(cloud_inner->width * cloud_inner->height);

	cloud_outer->width = cloud->points.size() - inliers->indices.size();
	cloud_outer->height = 1;
	cloud_outer->points.resize(cloud_outer->width * cloud_outer->height);

	//创建一个数组,大小为点云总数,初始化为0
	std::vector p_flag(cloud->points.size());

	//将平面内的点标记
	for (size_t i = 0; i < inliers->indices.size(); ++i)
		p_flag[inliers->indices[i]] = 1;

	for (size_t i = 0,j=0 ; i < (*cloud).points.size(); ++i)
	{
		//遍历,找出平面外的点
		if (p_flag[i] == 0)
		{
			cloud_outer->points[j].x = (*cloud).points[i].x;
			cloud_outer->points[j].y = (*cloud).points[i].y;
			cloud_outer->points[j].z = (*cloud).points[i].z;
			++j;
			std::cerr << "outer points index:\t" << i << "\t" << (*cloud).points[i].x << "\t"
				<< (*cloud).points[i].y << "\t"
				<< (*cloud).points[i].z << std::endl;
		}
	}

	//打印出平面外的点
	std::cerr << std::endl << "Outer points: " << cloud_outer->points.size() << std::endl;
	for (size_t i = 0; i < cloud_outer->points.size(); ++i)
	{
		std::cerr << "\t" << (*cloud_outer).points[i].x << "\t"
			<< (*cloud_outer).points[i].y << "\t"
			<< (*cloud_outer).points[i].z << std::endl;
	}

	//平面内的点
	std::cerr << "Model inliers: " << inliers->indices.size() << std::endl;
	for (size_t i = 0; i < inliers->indices.size(); ++i)
	{
		cloud_inner->points[i].x = (*cloud).points[inliers->indices[i]].x;
		cloud_inner->points[i].y = (*cloud).points[inliers->indices[i]].y;
		cloud_inner->points[i].z = (*cloud).points[inliers->indices[i]].z;
		std::cerr << "index:\t" << inliers->indices[i] << "\t" << (*cloud).points[inliers->indices[i]].x << "\t"
			<< (*cloud).points[inliers->indices[i]].y << "\t"
			<< (*cloud).points[inliers->indices[i]].z << std::endl;
	}

步骤6:打印结果并显示

  • 使用PCLVisualizer创建视图对象
  • 使用pcl::visualization::PointCloudColorHandlerCustom设置点云颜色
  • 使用setPointCloudRenderingProperties()设置点的大小(突出显示)
//图形化显示
	//创建PCLVisualzer对象
	pcl::visualization::PCLVisualizer viewer("Plane Model Segmentation");

	int v1(1);
	int v2(2);
	
	//创建视角v1,v2
	viewer.createViewPort(0.0, 0.0, 0.5, 1.0,v1);
	viewer.createViewPort(0.5, 0.0, 1.0, 1.0,v2);
	//设置背景颜色为白色
	viewer.setBackgroundColor(255, 255, 255, v1);
	viewer.setBackgroundColor(255, 255, 255, v2);
	//添加直角坐标,放大1000倍
	viewer.addCoordinateSystem(1000,v1);
	viewer.addCoordinateSystem(1000,v2);
	
	//设置点云颜色
	pcl::visualization::PointCloudColorHandlerCustom cloud_origin(cloud, 255, 0, 0);
	pcl::visualization::PointCloudColorHandlerCustom cloud_in(cloud_inner, 255, 0, 0);
	pcl::visualization::PointCloudColorHandlerCustom cloud_out(cloud_outer, 0, 0, 255);


	viewer.addPointCloud(cloud, cloud_origin, "v1", v1);
	viewer.addPointCloud(cloud_outer, cloud_out, "v2", v2);
	viewer.addPointCloud(cloud_inner, cloud_in, "v3", v2);

	//设置点云的大小,point_size默认为1,这里设置为1000,突出显示
	viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1000,"v1",v1);
	viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1000,"v2",v2);
	viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1000,"v3",v2);
	viewer.spin();

CmakeLists.txt

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

project(planar_segmentation)

find_package(PCL 1.2 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

add_executable (planar_segmentation planar_segmentation.cpp)
target_link_libraries (planar_segmentation ${PCL_LIBRARIES})

你可能感兴趣的:(PCL点云处理,PCL,点云分割,点云处理)