- 医疗AI新基建:MCP与A2A协议的破局与前瞻
Allen_Lyb
医疗高效编程研发人工智能健康医疗自动化自然语言处理数据库
一、引言1.1研究背景与动因在数字化与智能化飞速发展的时代浪潮下,医疗AI已成为全球医疗领域变革与创新的关键驱动力。从疾病的早期精准诊断,到个性化治疗方案的制定,再到远程医疗与健康管理,医疗AI正以其强大的数据处理能力、精准的模式识别能力和高效的决策辅助能力,重塑着传统医疗服务的格局。据相关数据显示,2023年中国AI医疗行业规模达973亿元,预计2028年将增至1598亿元,年复合增长率达10.
- LeetCode 力扣 第21题解题笔记
艾伦的自由之翼
leetcode链表算法
题目:将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。(1)递归解法L1.val意思是取链表L1的头结点本题可以提炼出一个字问题,假设原问题是L1和L2,并且假设L1的值更小,那么合并L1,L2,就可以做如下考虑:取出头结点L1,解决子问题:合并L1next和L2,L1的next指向子问题的结果就可以了模式识别:子问题和原问题具有相同结构,意思就是说,返
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- 【深度学习新浪潮】什么是system 1和system 2?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能大模型推理模型COT模型蒸馏动态推理
在大模型研究中,System1和System2的概念源于心理学家DanielKahneman的双系统理论,用于描述人类思维的两种模式。System1代表快速、直觉、自动化的思维(如模式识别),而System2代表慢速、有意识、需要努力的逻辑推理(如复杂数学计算)。这一理论被引入AI领域后,成为理解大模型能力边界和优化方向的重要框架。一、大模型中的System1与System2的定义System1(
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- 21、子图同构问题的深度解析
metal
子图同构图论算法
子图同构问题的深度解析1.子图同构问题概述子图同构问题是图论中的一个核心问题,广泛应用于社交网络分析、生物信息学、模式识别等领域。该问题的定义是:给定两个图,一个是较大的主图(HostGraph),另一个是较小的模式图(PatternGraph),判断主图中是否存在一个子图与模式图同构。简单来说,就是要找到主图中与模式图结构完全一致的子图。子图同构问题的难度在于它是一个NP完全问题,意味着在最坏情
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- 人类的具身智能与机器的具身智能
人机与认知实验室
人类具身智能与机器具身智能的根本区别在于其基础机制和本质属性。人类具身智能是基于生物体的生理结构和神经系统的复杂交互,通过身体与环境的直接感知和体验,形成具有情感、意识和主观性的认知与行为能力。这种智能是动态的、适应性强的,并且深受个体经验、文化背景和社会互动的影响。而机器具身智能则是通过传感器、算法和数理模型来模拟与物理世界的交互,依赖于预设的规则和数据驱动的模式识别,缺乏人类的主观体验、情感和
- 大型语言模型的智能本质是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力语言模型人工智能自然语言处理
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造大型语言模型(如GPT-4、Claude等)的智能本质可概括为基于海量数据的统计模式识别与生成系统,其核心能力源于对语言规律的深度学习,但缺乏真正的理解与意识。以下从本质特征、技术机制、典型案例及争议点展开分析:一、智能本质的核心特征统
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- 2025年人工智能、虚拟现实与交互设计国际学术会议
学术小八
学术人工智能vr交互
重要信息官网:www.aivrid.com时间:2025年10月17-19日地点:中国-东莞部分介绍征稿主题包括但不限于:生物特征模式识别机器视觉专家系统深度学习智能搜索自动编程智能控制智能机器人系统组件虚拟现实平台用于VR/AR的AI平台数据和生成、操作、分析和验证浸入式环境和虚拟世界的生成优化和现实的渲染人工智能与用户体验个性化推荐系统情感计算与用户响应虚拟现实与沉浸式技术沉浸式环境设计交互设
- Bongo-Cat-Crew:用Python打造动态音乐猫
元楼
本文还有配套的精品资源,点击获取简介:在这个项目中,我们创建了一个将音乐、游戏和编程结合的创新体验,允许玩家通过动态猫声分类与节奏游戏OSU!互动。Python的使用使得音乐节奏识别、猫声分类逻辑和游戏接口交互成为可能。项目的核心包含了音乐节奏分析、游戏模式识别和猫声动画实现等技术要点,旨在为玩家提供独特的交互乐趣。1.Python在项目中的应用和角色1.1Python在IT行业中的普及Pytho
- 【AI与数据管理】基于AI大模型的企业元数据管理方案
暴躁小师兄数据学院
人工智能ai语言模型
基于AI大模型的元数据关键解决方案元数据(metadata)是描述数据的数据,例如数据的来源、结构、类型和质量信息。它在数据管理、分析和应用中至关重要。随着人工智能(AI)大模型(如基于Transformer的模型)的发展,这些模型凭借其强大的自然语言处理、模式识别和生成能力,为元数据处理提供了高效、自动化的解决方案。下面,我将逐步解释基于AI大模型的元数据关键解决方案,帮助您理解核心方法、挑战和
- 模糊逻辑:自然模糊性的数学处理
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
模糊逻辑:自然模糊性的数学处理关键词:模糊逻辑、模糊集合、模糊控制器、模糊神经网络、模式识别、决策支持系统摘要:本文深入探讨了模糊逻辑这一数学工具,旨在揭示其在处理自然模糊性方面的独特优势。通过对模糊逻辑基础、应用和高级主题的详细分析,本文展示了模糊逻辑在多个领域的实际应用,包括模糊控制器、模糊神经网络、模式识别和决策支持系统等。文章结构清晰,便于读者逐步深入理解和掌握这一重要技术。目录大纲:第一
- 基于Python的气象数据分析及可视化研究
气象数据作为地球系统科学的核心要素,其分析与可视化在气候研究、灾害预警、农业生产等领域具有战略性意义。本文以Python技术栈为基座,系统探讨气象数据的采集预处理、多维度分析模型及可视化表达范式,通过3000+字深度研究揭示Pandas时序处理、Xarray多维计算、Cartopy地理可视化等工具的核心方法论。内容涵盖全球再分析数据挖掘、极端天气模式识别、动态热力图构建等实战场景,并引入机器学习预
- 量子算法:微算法科技用于定位未知哈希图的量子算法,网络安全中的哈希映射突破
MicroTech2025
量子计算哈希算法
近年来,量子计算的飞速发展使其成为各个领域的变革力量。特别是在网络安全领域,量子算法展示了加速并增强威胁检测(如恶意软件识别)方法的巨大潜力。微算法科技(NASDAQ:MLGO)用于定位未知哈希图的量子算法,是针对未知哈希图定位而设计的量子算法。这项技术可能会彻底改变在数据处理中利用哈希值的方式,特别是在恶意软件模式识别中。传统网络安全框架通常依赖哈希函数来生成不同数据结构的唯一标识符,或称之为“
- IDS检测原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!IDS(入侵检测系统)的核心使命是**从海量网络/主机行为中精准识别攻击企图**,其技术本质是**异常行为模式识别引擎**。以下从检测原理、系统架构到技术演进进行深度解析:---###⚙️IDS核心检测原理####1.**双引擎协同机制**|**检测类型**|**原理**|**优势/局限**|**典型算法**||--------------------|---
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- AI表格数据分析
简单发一篇文章,最近看到AI数据分析是越来越火了哈,把简单的流程进行一次简要的分享。AI数据分析的本质,是“结构化数据→模式识别→可视化表达+洞察输出”。1、分析流程详解:(1)数据预处理什么是数据预处理呢?其实它可以理解成你给的是什么。步骤1:识别数据结构表头,字段的含义等。步骤2:清洗数据去除空值、格式错误、重复数据。步骤3:类型识别判断哪些是时间字段?哪些是数值型?哪些是分类字段?总结:类似
- 基于OpenCv的图片倾斜校正系统详细设计与具体代码实现
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于OpenCv的图片倾斜校正系统详细设计与具体代码实现1.背景介绍1.1图像处理的重要性在当今数字时代,图像处理技术在各个领域都扮演着重要角色。无论是在计算机视觉、模式识别、医学影像、遥感探测还是多媒体处理等领域,图像处理都是不可或缺的核心技术。通过对图像进行预处理、增强、分割、特征提取等操作,可以从图像中获取有价值的信息,为后续的分析和决策提供支持。1.2图像倾斜问题及其影响在实际应用中,由于
- 【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!
努力毕业的小土博^_^
学术会议推荐信号处理机器学习神经网络人工智能
【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!文章目录【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模
- MySQL用户留存与流失分析
Mr数据杨
全栈数据仓库mysql数据库
用户留存和流失分析是数据分析中至关重要的部分,尤其在快速发展的互联网产品和应用中,用户生命周期的变化直接关系到产品的成长与盈利。通过分析用户留存率和流失率,产品管理人员可以准确判断用户在产品使用过程中的行为倾向,从而优化用户体验、增加用户黏性、并提高商业转化率。本文将从用户生命周期的概念出发,探讨如何在MySQL中进行留存与流失的详细分析,包括流失用户的行为模式识别与预警、以及通过用户分层来设计个
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- 用excel构建神经网络,excel神经网络实现
快乐的小荣荣
神经网络人工智能深度学习
NeuroSolutionsforExcel这个功能可以实现多种神经网络嘛?。神经网络是一种能适应新环境的系统,它针对过去经验(信息)的重覆学习,而具有分析、预测、推理、分类等能力,是当今能够仿效人类大脑去解决复杂问题的系统,比起常规的系统(使用统计方法、模式识别、分类、线性或非线性方法)而言,以神经网络为基础的系统具有更强大的功能和分析问题技巧,可以用来解决信号处理、仿真预测、分析决策等复杂的问
- MATLAB实现基于基元共生矩阵的纹理特征提取方法
杏花朵朵
本文还有配套的精品资源,点击获取简介:纹理特征提取在图像处理中对于模式识别和分类等应用至关重要。本文将详细介绍如何在MATLAB中使用基元共生矩阵(PCM)来提取图像的纹理特征。基元共生矩阵通过统计像素对在特定距离和方向上的相对位置关系来描述纹理的局部结构。本方法首先定义不同的方格和方向,然后计算共生矩阵,并从中提取出对比度、能量、熵、相关性等统计特征。最后,这些统计特征被组合成特征向量,用于图像
- AI学习指南高数篇-泛函分析
俞兆鹏
AI学习指南ai
AI学习指南高数篇-泛函分析概述在数学领域中,泛函分析是研究无限维向量空间及其内涵结构的分支学科。泛函分析通过研究向量空间内的连续线性泛函,解决了无限维空间上函数序列的极限性质以及函数空间的拓扑性质等问题。泛函分析在AI中的使用场景泛函分析在人工智能领域中发挥着重要作用,特别是在机器学习和深度学习领域。通过泛函分析的方法,AI系统可以更好地处理高维数据,从而更准确地进行模式识别、数据建模和预测分析
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- 数据挖掘在大数据领域的重要性及价值
AI天才研究院
计算AIAgent应用开发数据挖掘大数据人工智能ai
数据挖掘在大数据领域的重要性及价值关键词:数据挖掘、大数据分析、机器学习、商业智能、数据预处理、预测分析、数据价值提取摘要:本文系统解析数据挖掘在大数据时代的核心地位,通过技术原理、算法实现、行业应用等维度,揭示其如何从海量数据中萃取有效信息。结合CRISP-DM方法论、典型算法案例及实战项目,阐述数据挖掘在数据预处理、模式识别、预测建模等关键环节的技术价值,同时分析金融、医疗、电商等行业的落地场
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri