- Qwen3 大模型实战:使用 vLLM 部署与函数调用(Function Call)全攻略
曦紫沐
大模型大模型部署Qwen3vLLM函数调用
文章摘要本文将带你从零开始,深入掌握如何使用Qwen3-8B大语言模型,结合vLLM进行高性能部署,并通过函数调用(FunctionCall)实现模型与外部工具的智能联动。我们将详细讲解部署命令、调用方式、代码示例及实际应用场景,帮助你快速构建基于Qwen3的智能应用。一、Qwen3简介与部署环境准备Qwen3是通义千问系列的最新一代大语言模型,具备强大的自然语言理解和生成能力,尤其在函数调用、工
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- ChatGPT还不能写小说吗?
刘若愚
最近,ChatGPT大热,据说可以写论文,编故事,好像无所不能。于是,我给它出了个题目:写一篇5万字的科幻小说。人物:刘若愚,化学家;刘子琪,大律师;仔仔,刘子琪的宠物猫;周金凝,医生;刘泽余,大侦探;赵政淇,程序猿;杰夫(Jeff)机器人它给我的回答是:我很抱歉,我是一个AI语言模型,无法写出如此长篇的小说。但我可以为您提供一些写作灵感和指导:确定故事背景和时间线:在科幻小说中,背景和时间线非常
- AI心理学四层架构揭秘:语言模型为何“说谎“?
TGITCIC
AI-大模型的落地之道语言模型人工智能自然语言处理大模型国产大模型大模型落地
第一章神经层:代码编织的"脑电图"1.1注意力权重的量子跃迁当Claude3.5Haiku处理"达拉斯所在州的首府"这类问题时,其注意力权重图谱呈现出量子跃迁特征。研究团队通过归因图技术捕捉到:在输入"达拉斯"的瞬间,模型内部Texas节点的激活强度达到87.6%,首府概念节点同步飙升至79.3%。这种非线性激活模式与人类大脑的默认模式网络惊人相似。模型层级激活时序决策路径可解释性神经层300ms
- BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习人工智能语言模型自然语言处理机器学习深度学习
https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe80https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe801引言与此担忧一致,研究表明,即使最初校准良好的大型语言模型(LLMs)在RL训练后也会变得过度自信(Lengetal.,2
- Gradient-Adaptive Policy Optimization:Towards Multi-Objective Alignment of Large Language Models
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习
2025.acl-long.549.pdfhttps://aclanthology.org/2025.acl-long.549.pdf1.概述大型语言模型(LLMs)(Anthropic,2023;OpenAI,2024)已经在广泛的实际应用中展示了显著的能力(Bubecketal.,2023),包括内容创作(Yuanetal.,2022)、编程辅助(Chenetal.,2021;Gaoetal.
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- Langchain学习笔记(十):文档加载与处理详解
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。前言在构建基于大语言模型的应用时,文档处理是一个至关重要的环节。无论是构建RAG(检索增强生成)系统,还是进行知识库问答,我们都需要将各种格式的文档转换为模型可以理解和处理的形式。Langchain提供了强大的文档加载和处理功能,支持多种文件格式,并提
- BGE-M3模型结合Milvus向量数据库强强联合实现混合检索
在基于生成式人工智能的应用开发中,通过关键词或语义匹配的方式对用户提问意图进行识别是一个很重要的步骤,因为识别的精准与否会影响后续大语言模型能否检索出合适的内容作为推理的上下文信息(或选择合适的工具)以给出用户最符合预期的回答。在本篇文章中,我将尽可能详细地介绍想达成准确识别用户提问意图的解决方案之一,即基于功能强大的BGE-M3模型和Milvus向量数据库实现混合检索(稠密向量densevect
- 构建高效 RAG 流程的七个关键点及其落地实践
charles666666
搜索引擎大数据需求分析交互笔记数据库
人工智能应用浪潮中,检索增强生成(RAG)技术凭借着结合大型语言模型(LLMs)的生成能力和信息检索系统的独特优势,成为了各企业挖掘数据价值、提升业务智能化水平的关键手段之一。然而,构建一个高效且精准的RAG流程并非易事,其中存在着诸多关键点和挑战。作为一名非资深IT技术顾问,我将基于丰富的实战经验,为大家深入剖析构建高效RAG流程的七个关键点及其落地实践。一、文档解析:混合格式的“第一道坎”在企
- VideoChat:开源的数字人实时对话系统,支持自定义数字人的形象和音色
蚝油菜花
每日AI项目与应用实例人工智能开源TTS语音识别
❤️如果你也关注大模型与AI的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的AI应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读VideoChat是一款开源的实时数字人对话系统,支持语音输入和实时对话功能,首包延迟低至3秒。用户可以根据需要自定义数字人的形象和音色,实现个性化交互。VideoChat支持ASR-LLM-T
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- 2025年最新五大顶级大模型技术对比分析报告
it_czz
人工智能
2025年最新五大顶级大模型技术对比分析报告执行摘要本报告基于2025年最新数据,深度分析当前最顶尖的5个已发布大语言模型:KimiK2(月之暗面)、Claude3.5Sonnet、GPT-4o、Gemini2.5Pro、DeepSeekR1,从技术架构、成本效益、性能表现、适配场景等多个维度进行全面对比。核心发现KimiK2:中文优化最强,超长上下文处理能力突出,本土化程度最高Claude3.5
- AI+MCP智能研判系统架构
AI+MCP智能研判系统架构1.系统概述1.1核心理念AI+MCP智能研判系统是一个创新的网络安全分析平台,通过将大语言模型(LLM)的智能理解能力与MCP(ModelContextProtocol)协议的标准化工具调用能力相结合,实现了"自然语言提问→AI智能理解→MCP工具调用→AI深度研判→智能结果输出"的完整闭环。1.2技术创新点智能意图识别:基于LLM的自然语言理解,自动解析用户查询意图
- 优化提示内容生成技术框架:提示工程架构师的坚实后盾
优化提示内容生成技术框架:提示工程架构师的坚实后盾引言背景:大语言模型时代的“提示瓶颈”当GPT-4、Claude3、Gemini等大语言模型(LLM)的参数规模突破万亿、上下文窗口扩展至百万token时,一个矛盾逐渐凸显:模型能力的跃升与提示质量的滞后,正在成为制约AI应用落地的核心瓶颈。2023年斯坦福大学的研究显示,在企业级LLM应用中,70%的功能故障源于提示设计缺陷——或因指令模糊导致输
- 从0搭建到持续优化:提示工程架构师的评估体系迭代全流程
从0搭建到持续优化:提示工程架构师的评估体系迭代全流程引言:AI时代的关键角色与评估挑战在人工智能技术迅猛发展的今天,提示工程(PromptEngineering)已从一个小众技能演变为决定AI系统成败的核心能力。随着大语言模型(LLM)能力的不断增强,提示工程架构师(PromptEngineeringArchitect)作为一个新兴职业应运而生,成为连接业务需求与AI能力的关键桥梁。为什么提示工
- !LangChain代理决策架构与源码深度剖析(75)
LangChain代理决策架构与源码深度剖析一、LangChain代理决策架构概述1.1代理决策架构的核心组件LangChain代理的决策架构是其智能交互的核心,主要由大语言模型(LLM)、工具集(Tools)、提示模板(PromptTemplate)、规划器(Planner)、执行器(Executor)和反馈机制六大组件构成。这些组件通过协同工作,实现从用户输入解析到最终结果输出的完整决策流程。
- Crome:因果鲁棒奖励建模框架——破解LLM对齐中的奖励黑客难题
大千AI助手
人工智能#OTHERPython人工智能深度学习神经网络大模型因果推断奖励黑客RewardHacking
Crome(CausalRobustRewardModeling)是由GoogleDeepMind联合麦吉尔大学和魁北克人工智能研究所(MILA)于2025年提出的创新框架,旨在解决大语言模型(LLM)对齐中奖励模型(RM)的奖励黑客(RewardHacking)问题。该框架通过因果数据增强与反事实训练机制,显著提升RM对真实质量属性(如事实性、安全性)的敏感性,同时抑制对虚假属性(如文本长度、格
- LIMO:仅需817样本激活大模型数学推理能力,挑战“数据规模至上”传统范式
大千AI助手
人工智能#OTHER#Prompt人工智能机器学习神经网络算法大模型LIMOLessIsMore
“以认知模板唤醒沉睡知识,让推理能力在精不在多”LIMO是由上海交通大学、SII(ShanghaiArtificialIntelligenceLaboratory)、GAIRLab联合提出的突破性研究(2025年2月发表),其核心颠覆了传统AI领域“复杂推理需海量训练数据”的认知,证明仅用817个高质量样本即可激发大语言模型(LLMs)的数学推理能力,在AIME、MATH等竞赛级任务中超越使用10
- 【Ollama】大模型本地部署与 Java 项目调用指南
科马
LLMjava开发语言llama语言模型
Ollama大模型本地部署与Java项目调用指南一、引言背景介绍Ollama是一个轻量级的大语言模型部署工具,支持快速在本地拉取、运行主流开源模型(如LLaMA3、Mistral、Gemma等)。它简化了模型部署的过程,内置RESTfulAPI,使得开发者可以像调用本地服务一样使用强大的大模型能力。本文将介绍如何在本地部署Ollama模型,并通过Java项目调用Ollama提供的API接口,实现本
- 人机协作革命:AI原生应用的商业化路径探索
AGI大模型与大数据研究院
AI-nativeai
人机协作革命:AI原生应用的商业化路径探索关键词:AI原生应用、人机协作、商业化路径、智能代理、大语言模型、AI产品设计、价值闭环摘要:本文深入探讨AI原生应用在商业化过程中的关键路径和挑战。我们将从技术架构、产品设计和商业模式三个维度,分析如何构建可持续的AI商业生态。通过解析智能代理系统、价值闭环设计等核心概念,结合多个行业案例,为开发者提供从技术实现到商业变现的全链路思考框架。背景介绍目的和
- DesktopCommanderMCP:深度部署与使用指南
皓月照山川
AI人工智能人工智能自动化运维windows
DesktopCommanderMCP:深度部署与使用指南引言DesktopCommanderMCP是一个强大的本地化模型上下文协议(ModelContextProtocol,MCP)服务器,它通过为大型语言模型(如Claude)提供与其桌面环境直接交互的能力,极大地扩展了AI助手的应用边界。它允许模型执行终端命令、管理文件系统、控制进程,从而实现从代码编写、项目构建到系统管理的端到端自动化工作流
- 【大模型LLM学习】function call/agent学习记录
威化饼的一隅
大模型LLM学习agentlangchain意图识别functioncall工具调用
【大模型LLM学习】functioncall/agent学习记录0前言1langchain实现functioncall2调用本地模型3微调本地模型3.1few-shot调用Claude生成Q-A对3.2tools格式3.3agent微调格式3.4swift微调p.s.0前言 记录一下使用langchain做简单的functioncall/agent(或者说意图识别,如果函数有返回值再进行summ
- 提示工程监控不到位:5个未做日志记录导致的排查困难
提示工程监控不到位:5个未做日志记录导致的排查困难关键词:提示工程,日志记录,LLM应用调试,AI监控,排查困难,提示模板,上下文追踪摘要:在大语言模型(LLM)应用爆发的时代,提示工程已成为连接人类需求与AI能力的核心桥梁。但多数开发者聚焦于"如何写好提示",却忽视了"如何记录提示"——日志记录作为提示工程的"黑匣子",直接决定了AI应用故障排查的效率与准确性。本文通过5个真实场景案例,深入浅出
- 提示工程中的上下文窗口优化:架构师提升模型记忆的关键
AI实战架构笔记
ai
提示工程中的上下文窗口优化:架构师提升模型记忆的关键元数据标题:提示工程中的上下文窗口优化:架构师提升模型记忆的关键策略与实践指南关键词:上下文窗口管理、提示工程架构、大型语言模型优化、注意力机制效率、长序列处理、记忆增强技术、动态上下文规划摘要:在大型语言模型(LLM)应用中,上下文窗口是连接模型能力与实际需求的关键桥梁。本文从架构师视角,系统探讨上下文窗口优化的理论基础、设计原则与实施策略。通
- 「实战指南」使用 Python 调用大模型(LLM)
用什么都重名
大模型相关pythonLLM大模型api调用
目录前言1.原生HTTP请求方式1.1核心特点1.2关键代码分析1.3优势和适用场景1.4完整代码2.封装式API调用2.1核心特点2.2关键代码分析2.3优势和适用场景2.4完整代码3.OpenAISDK方式3.1核心特点3.2关键代码分析3.3优势和适用场景3.4完整代码4.传统OpenAI库方式4.1核心特点4.2关键代码分析4.3优势和适用场景4.4完整代码5.对比分析总结前言随着大语言模
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。