AI+MCP智能研判系统是一个创新的网络安全分析平台,通过将大语言模型(LLM)的智能理解能力与MCP(Model Context Protocol)协议的标准化工具调用能力相结合,实现了"自然语言提问→AI智能理解→MCP工具调用→AI深度研判→智能结果输出"的完整闭环。
架构图详细说明:
这是AI+MCP智能研判系统的整体五层架构设计,从上到下体现了完整的数据流和处理链路:
用户交互层:
AI智能层(系统核心):
MCP协议层(标准化桥梁):
️ 工具执行层(具体能力):
数据存储层(数据支撑):
关键数据流:
核心流程详细说明:
这个时序图展示了AI+MCP系统处理用户请求的完整生命周期,体现了"AI理解 → MCP调用 → AI研判"的创新三步骤模式:
整体流程特点:
详细步骤解析:
第一步:意图理解阶段
第二步:工具调用阶段
第三步:智能研判阶段
⚡ 创新优势:
与传统方案对比:
@Component
public class IntentAnalyzer {
/**
* 意图识别核心算法
*/
public IntentResult analyzeIntent(String userQuery) {
// 1. 文本预处理
String processedQuery = preprocessText(userQuery);
// 2. 实体识别
Map<String, Object> entities = extractEntities(processedQuery);
// 3. 意图分类
String intentType = classifyIntent(processedQuery, entities);
// 4. 参数映射
Map<String, Object> parameters = mapParameters(entities, intentType);
return new IntentResult(intentType, parameters);
}
private String classifyIntent(String query, Map<String, Object> entities) {
if (containsNetworkTerms(query) && entities.containsKey("ip")) {
return "network_analysis";
} else if (containsThreatTerms(query)) {
return "threat_analysis";
} else if (containsIocTerms(query)) {
return "ioc_analysis";
}
return "general_analysis";
}
}
@Component
public class IntelligentAnalyzer {
/**
* 智能分析引擎
*/
public AnalysisResult performAnalysis(String userQuery,
IntentResult intent,
Map<String, Object> mcpResult) {
// 1. 上下文构建
AnalysisContext context = buildContext(userQuery, intent, mcpResult);
// 2. 风险评估
RiskAssessment risk = assessRisk(context);
// 3. 智能总结
String summary = generateSummary(context, risk);
// 4. 建议生成
List<String> recommendations = generateRecommendations(risk);
return new AnalysisResult(summary, risk, recommendations);
}
private RiskAssessment assessRisk(AnalysisContext context) {
int riskScore = 0;
String riskLevel = "low";
// 基于多维度评估风险
riskScore += assessNetworkRisk(context.getNetworkData());
riskScore += assessThreatRisk(context.getThreatData());
riskScore += assessIocRisk(context.getIocData());
riskLevel = calculateRiskLevel(riskScore);
return new RiskAssessment(riskScore, riskLevel);
}
}
@Component
public class IntelligentMcpServer {
private final Map<String, ToolExecutor> toolExecutors = new HashMap<>();
/**
* 智能工具注册
*/
@PostConstruct
public void registerTools() {
// 网络分析工具
toolExecutors.put("query_network_info", new NetworkInfoExecutor());
toolExecutors.put("check_ip_in_network", new IpCheckExecutor());
toolExecutors.put("get_all_ips_in_network", new NetworkEnumExecutor());
// 威胁分析工具
toolExecutors.put("query_threat_logs", new ThreatQueryExecutor());
toolExecutors.put("analyze_ioc", new IocAnalysisExecutor());
toolExecutors.put("assess_threat_level", new ThreatAssessmentExecutor());
// 情报集成工具
toolExecutors.put("query_threat_intel", new ThreatIntelExecutor());
toolExecutors.put("check_vulnerability", new VulnCheckExecutor());
toolExecutors.put("verify_reputation", new ReputationExecutor());
}
/**
* 智能工具路由
*/
public CompletableFuture<Map<String, Object>> executeToolAsync(
String toolName,
Map<String, Object> parameters) {
ToolExecutor executor = toolExecutors.get(toolName);
if (executor == null) {
return CompletableFuture.failedFuture(
new IllegalArgumentException("未知工具: " + toolName)
);
}
return CompletableFuture.supplyAsync(() -> {
try {
return executor.execute(parameters);
} catch (Exception e) {
throw new RuntimeException("工具执行失败: " + e.getMessage(), e);
}
});
}
}
@Configuration
@EnableAsync
public class AsyncConfig {
@Bean("mcpExecutor")
public ThreadPoolTaskExecutor mcpExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(10);
executor.setMaxPoolSize(50);
executor.setQueueCapacity(200);
executor.setThreadNamePrefix("MCP-Executor-");
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
executor.initialize();
return executor;
}
@Bean("aiExecutor")
public ThreadPoolTaskExecutor aiExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(5);
executor.setMaxPoolSize(20);
executor.setQueueCapacity(100);
executor.setThreadNamePrefix("AI-Executor-");
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
executor.initialize();
return executor;
}
}
@Component
public class NetworkAnalysisTools {
/**
* 高级网络信息分析
*/
public Map<String, Object> analyzeNetworkInfo(String ip, int cidr) {
// 1. 基础网络计算
SubnetUtils subnet = new SubnetUtils(ip + "/" + cidr);
SubnetUtils.SubnetInfo info = subnet.getInfo();
// 2. 地理位置分析
Map<String, Object> geoInfo = getGeolocation(ip);
// 3. 威胁情报检查
Map<String, Object> threatInfo = checkThreatIntel(ip);
// 4. 网络特征分析
Map<String, Object> networkFeatures = analyzeNetworkFeatures(info);
return Map.of(
"basic_info", buildBasicInfo(info),
"geolocation", geoInfo,
"threat_intel", threatInfo,
"network_features", networkFeatures,
"analysis_timestamp", Instant.now()
);
}
private Map<String, Object> analyzeNetworkFeatures(SubnetUtils.SubnetInfo info) {
return Map.of(
"network_type", determineNetworkType(info),
"address_space", calculateAddressSpace(info),
"subnet_mask", info.getNetmask(),
"is_private", isPrivateNetwork(info.getNetworkAddress()),
"broadcast_domain", info.getBroadcastAddress()
);
}
}
@Component
public class ThreatAnalysisTools {
/**
* 深度威胁分析
*/
public Map<String, Object> performThreatAnalysis(Map<String, Object> parameters) {
String threatLevel = (String) parameters.get("threat_level");
String timeRange = (String) parameters.get("time_range");
// 1. 威胁数据收集
List<Map<String, Object>> threatLogs = collectThreatLogs(threatLevel, timeRange);
// 2. 模式识别
Map<String, Object> patterns = identifyThreatPatterns(threatLogs);
// 3. 攻击链分析
Map<String, Object> attackChains = analyzeAttackChains(threatLogs);
// 4. 影响评估
Map<String, Object> impactAssessment = assessImpact(threatLogs, patterns);
return Map.of(
"threat_summary", summarizeThreats(threatLogs),
"attack_patterns", patterns,
"attack_chains", attackChains,
"impact_assessment", impactAssessment,
"mitigation_suggestions", generateMitigations(patterns)
);
}
private Map<String, Object> identifyThreatPatterns(List<Map<String, Object>> logs) {
Map<String, Integer> ipFrequency = new HashMap<>();
Map<String, Integer> attackTypes = new HashMap<>();
Map<String, List<String>> timePatterns = new HashMap<>();
for (Map<String, Object> log : logs) {
String sourceIp = (String) log.get("source_ip");
String attackType = (String) log.get("attack_type");
String timestamp = (String) log.get("timestamp");
ipFrequency.merge(sourceIp, 1, Integer::sum);
attackTypes.merge(attackType, 1, Integer::sum);
timePatterns.computeIfAbsent(extractHour(timestamp), k -> new ArrayList<>())
.add(sourceIp);
}
return Map.of(
"frequent_attackers", getTopAttackers(ipFrequency),
"attack_type_distribution", attackTypes,
"temporal_patterns", analyzeTemporalPatterns(timePatterns),
"correlation_analysis", performCorrelationAnalysis(logs)
);
}
}
多级缓存架构详细说明:
这个图展示了AI+MCP系统的四层缓存架构设计,旨在最大化系统性能和响应速度:
缓存层级设计:
L1级:内存缓存(JVM堆内缓存)
L2级:Redis缓存(进程外缓存)
L3级:数据库缓存(查询结果缓存)
L4级:文件缓存(磁盘缓存)
缓存策略映射:
热点数据缓存 ← L1内存缓存
频次缓存 ← L2 Redis缓存
时间窗口缓存 ← L3数据库缓存
结果缓存 ← L4文件缓存
⚡ 性能优化效果:
缓存一致性保证:
# 性能优化配置
performance:
cache:
# AI意图缓存
intent-cache:
max-size: 10000
expire-after-write: 1h
# MCP结果缓存
mcp-result-cache:
max-size: 5000
expire-after-write: 30m
# 威胁情报缓存
threat-intel-cache:
max-size: 50000
expire-after-write: 6h
async:
# AI处理线程池
ai-pool:
core-size: 8
max-size: 32
queue-capacity: 500
# MCP调用线程池
mcp-pool:
core-size: 16
max-size: 64
queue-capacity: 1000
circuit-breaker:
# AI服务熔断
ai-service:
failure-threshold: 5
recovery-timeout: 30s
# MCP服务熔断
mcp-service:
failure-threshold: 10
recovery-timeout: 60s
安全层次架构详细说明:
这个图展示了AI+MCP系统的四层纵深安全防护体系,确保系统在多个层面都有完善的安全保障:
️ 四层安全防护体系:
第一层:接入安全(边界防护)
身份认证(Authentication):
权限授权(Authorization):
频率限制(Rate Limiting):
第二层:传输安全(通信防护)
TLS加密:
证书验证:
完整性校验:
第三层:数据安全(存储防护)
数据加密:
敏感数据脱敏:
审计日志:
第四层:应用安全(业务防护)
输入验证:
输出过滤:
CSRF防护:
综合安全效果:
监控体系设计详细说明:
这个图展示了AI+MCP系统的全方位监控体系,包含四大监控维度和四种告警机制,确保系统健康稳定运行:
四大监控指标体系:
业务监控(关注用户体验)
查询指标:
准确率指标:
响应时间:
系统监控(关注基础设施)
资源使用率:
性能指标:
错误率:
AI模型监控(关注AI性能)
模型性能:
Token消耗:
推理延迟:
MCP监控(关注协议层)
工具调用统计:
连接状态:
吞吐量:
四种告警机制:
⚡ 实时告警(查询指标触发)
阈值告警(资源使用率触发)
趋势告警(AI模型监控触发)
异常检测(错误率监控触发)
监控价值:
# 自动化运维配置
automation:
health-check:
ai-service:
interval: 30s
timeout: 10s
retry: 3
mcp-service:
interval: 15s
timeout: 5s
retry: 2
auto-scaling:
ai-replicas:
min: 2
max: 10
cpu-threshold: 70%
mcp-replicas:
min: 3
max: 15
memory-threshold: 80%
backup:
config-backup:
schedule: "0 2 * * *"
retention: 30d
log-backup:
schedule: "0 0 * * 0"
retention: 90d
# Docker Compose配置
version: '3.8'
services:
ai-mcp-server:
image: ai-mcp-server:latest
ports:
- "8080:8080"
environment:
- SPRING_PROFILES_ACTIVE=production
- OPENAI_API_KEY=${OPENAI_API_KEY}
depends_on:
- redis
- postgres
deploy:
replicas: 3
resources:
limits:
memory: 2G
cpus: '1.0'
redis:
image: redis:7-alpine
ports:
- "6379:6379"
volumes:
- redis_data:/data
postgres:
image: postgres:15-alpine
environment:
POSTGRES_DB: ai_mcp_db
POSTGRES_USER: ai_mcp_user
POSTGRES_PASSWORD: ${DB_PASSWORD}
volumes:
- postgres_data:/var/lib/postgresql/data
apiVersion: apps/v1
kind: Deployment
metadata:
name: ai-mcp-deployment
spec:
replicas: 5
selector:
matchLabels:
app: ai-mcp-server
template:
metadata:
labels:
app: ai-mcp-server
spec:
containers:
- name: ai-mcp-server
image: ai-mcp-server:latest
ports:
- containerPort: 8080
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
readinessProbe:
httpGet:
path: /actuator/health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
通过这种AI+MCP的创新架构,系统实现了从传统的"工具型"向"智能型"的跨越,为网络安全分析提供了全新的技术范式。