- AI 生成虚拟宠物:24 小时陪你聊天解闷
大力出奇迹985
人工智能宠物
本文围绕AI生成虚拟宠物展开,介绍这类依托人工智能技术诞生的虚拟伙伴,能实现24小时不间断陪伴聊天,为人们解闷。文中详细阐述其技术基础,包括自然语言处理、机器学习等;分析多样功能,如个性化互动、情绪回应等;探讨在独居人群、压力大者等不同群体中的应用场景,最后总结其为人们生活带来的积极影响及未来发展潜力,展现AI虚拟宠物在陪伴领域的独特价值。一、AI生成虚拟宠物的诞生背景与技术基石在快节奏的现代社会
- 基于Python的AI健康助手:开发与部署全攻略
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构python人工智能开发语言ai
基于Python的AI健康助手:开发与部署全攻略关键词:Python、AI健康助手、机器学习、自然语言处理、Flask、部署、健康管理摘要:本文将详细介绍如何使用Python开发一个AI健康助手,从需求分析、技术选型到核心功能实现,再到最终部署上线的完整过程。我们将使用自然语言处理技术理解用户健康咨询,通过机器学习模型提供个性化建议,并展示如何用Flask框架构建Web应用接口。文章包含大量实际代
- 【WRF-Chem教程第六期】WRF-Chem KPP Coupler 简介
WW、forever
WRFWRF-Chem
WRF-ChemKPPCoupler简介6.1介绍(Introduction)6.2KPP编译所需的系统环境(KPPRequirements)6.3编译WKC(CompilingtheWKC)6.4使用WKC实现化学机制(ImplementingchemicalmechanismswithWKC)当前可用机制(基于WKC的KPP实现)6.5WKC的目录组织结构(LayoutofWKC)WKC所在目
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 30 秒生成旅行计划!AI 代理帮你规划完美行程
在快节奏的现代生活中,高效规划旅行成为大众需求,AI代理凭借技术优势,实现30秒生成旅行计划。本文从技术原理、场景适配、优势亮点、潜在问题及未来趋势五个方面,解析AI代理规划行程的运作机制、适用场景、核心优势,探讨面临的挑战与发展方向,为读者呈现这一便捷工具的全貌,助其了解如何借助AI让旅行规划更轻松。正文一、技术原理:AI代理高效规划的核心支撑AI代理能快速生成旅行计划,背后是自然语言处理技术的
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 使用中转API调用OpenAI大模型的指南
引言近年来,人工智能(AI)技术的飞速发展使得各种大模型(如GPT-4)在自然语言处理领域表现出色。然而,中国用户访问OpenAI的API时经常会遇到网络限制问题。本文将介绍如何通过中转API地址(http://api.wlai.vip)调用OpenAI的大模型,并提供示例代码以供参考。使用中转API调用OpenAI大模型步骤一:安装所需的Python库首先,确保你已安装了openai库。可以通过
- 《揭秘AI应用架构师在智能虚拟人设计系统中的创新思维》
SuperAGI架构师的AI实验室
人工智能ai
揭秘AI应用架构师在智能虚拟人设计系统中的创新思维关键词:AI应用架构师、智能虚拟人、系统设计、创新思维、自然语言处理、计算机视觉、实时交互摘要:智能虚拟人已从科幻走进现实,无论是直播间的虚拟主播、手机里的智能助手,还是元宇宙中的数字分身,它们背后都离不开AI应用架构师的“隐形设计”。本文将以“总设计师视角”,用生活化的比喻和实例,拆解AI应用架构师在智能虚拟人系统设计中的创新思维——从“让虚拟人
- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- Rouge:面向摘要自动评估的召回导向型指标——原理、演进与应用全景
大千AI助手
深度学习人工智能神经网络Rouge文本摘要Summary评估
“以n-gram重叠量化文本生成质量,为摘要评估提供可计算标尺”Rouge(Recall-OrientedUnderstudyforGistingEvaluation)是由南加州大学信息科学研究所(ISI)的Chin-YewLin于2004年提出的自动文本摘要评估指标,其核心思想是通过计算生成文本与参考摘要之间的n-gram重叠率,量化摘要的内容覆盖度与忠实度。作为自然语言处理(NLP)领域最权威
- Python金融分析:情感分析在量化价值投资中的完整实现
AI量化价值投资入门到精通
python金融开发语言ai
Python金融分析:情感分析在量化价值投资中的完整实现关键词:Python金融分析、情感分析、量化投资、价值投资、自然语言处理、机器学习、金融文本挖掘摘要:本文系统解析如何将情感分析技术深度整合到量化价值投资体系中,通过Python实现从金融文本数据采集、预处理、情感建模到策略回测的完整流程。详细阐述基于规则引擎、机器学习和深度学习的多维度情感分析方法,结合财务指标构建复合投资模型,并通过实战案
- Rufus算法驱动转化革命:亚马逊卖家的低成本流量破局之道
在亚马逊精细化运营的下半场,流量竞争从“烧钱买量”转向“技术借势”,随着平台内部AI算法Rufus的深度应用,其衍生的“超级转化标签”正成为卖家提升转化率的秘密武器,这项由AI驱动的功能不仅重构了消费者决策路径,更以“零广告成本”的优势,为卖家开辟了一条弯道超车的新赛道。Rufus算法解码:AI如何重塑消费决策路径(一)超级转化标签的技术内核Rufus算法的核心是“评论智能提炼”,通过自然语言处理
- 打造专属知识库:手把手教你构建RAG系统
RAG通常指的是"Retrieval-AugmentedGeneration",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统数据收集建立知识库向量检索提示词与模型数据收集数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到
- 大模型微调:从零到实践,掌握AI大模型的核心技能
之之为知知
12大模型人工智能机器学习特征工程pytorch深度学习大模型微调
大模型微调:从零到实践,掌握AI大模型的核心技能引言大规模语言模型(如DeepSeek、通义千问)的出现,彻底改变了自然语言处理的格局。这些模型不仅在学术界取得了突破性进展,在工业界也得到了广泛应用。对于许多初学者来说,直接训练一个完整的大型语言模型可能显得遥不可及。幸运的是,微调(Fine-tuning)技术为我们提供了一条捷径,让我们可以基于已有的预训练模型,针对特定任务进行调整,从而快速实现
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- AI办公(综合)课程内容框架
建模中…
AI-native
AI办公(综合)课程内容框架:深度挖掘与分析一、课程定位深化:从“技能学习”到“价值创造体系构建”传统办公课程聚焦单点工具,本课程定位突破技能培训边界,构建“技术-场景-价值”闭环:-技术穿透性:不局限于AI工具表层操作,深入讲解自然语言处理(NLP)、生成式对抗网络(GANs)等技术在办公场景的底层逻辑,让学员理解“AI为何能优化流程”,而非仅知“如何用工具”。-场景延展性:覆盖内容运营、协作管
- 零基础-动手学深度学习-6.5 汇聚层(pooling)池化层
通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。WHY?因为我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感!此外,当检测较底层的特征时(例如6.2节中所讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性。例
- 人工智能自然语言处理:Transformer 模型详解
大力出奇迹985
人工智能自然语言处理transformer
一、Transformer模型的诞生背景在自然语言处理的漫长征程中,早期的传统模型,如循环神经网络(RNN)及其变体长短时记忆网络(LSTM),曾占据主导地位。RNN试图通过依次处理序列中的每个元素,来捕捉上下文信息。但它存在一个致命弱点,在处理长序列时,会面临梯度消失或梯度爆炸的问题,就像一个长途跋涉的旅人,随着路程的增加,逐渐忘记了出发时的目标和重要信息。LSTM虽然在一定程度上缓解了这个问题
- 跨境电商 ai架构设计
Java程序员 拥抱ai
ai人工智能
一、核心理论基础AI生成知识库的本质是**“数据驱动的知识结构化与智能化生产”**,核心依赖三大理论支撑:知识工程理论将跨境电商业务中分散的“非结构化信息”(如产品参数、用户评价、物流规则、合规条款)转化为“结构化知识”(如实体关系、规则库、决策树),通过AI实现知识的自动提取、关联与更新。例:家具用品的“材质-环保标准-目标市场合规要求”(如欧盟E1级板材认证)可形成关联知识链。自然语言处理(N
- 字节跳动Coze平台:零代码打造AI智能体
小小怪 @
人工智能
Coze,这是一个由字节跳动推出的AIBot开发平台。它允许用户快速构建、部署和管理自定义的AI聊天机器人(智能体),支持多种功能,如自然语言处理、知识库集成和任务自动化。1.什么是智能体Coze?定义:Coze是一个低代码/无代码的AI开发平台,专注于创建“智能体”(即AIagent)。这些智能体可以模拟人类对话、执行任务(如信息查询或自动化流程),并通过API或插件集成到各种应用中。核心优势:
- 利用 Tavily Search API 提升 AI 代理的搜索能力
VYSAHF
人工智能microsoftpython
技术背景介绍在人工智能代理的开发中,实时、准确的数据获取能力至关重要。TavilySearchAPI是专为大型语言模型(LLMs)设计的搜索引擎,它能够以极高的速度提供实时、准确且事实驱动的结果,对AI开发者来说是一项极具价值的工具。核心原理解析TavilySearch通过专门优化的搜索算法和高效的索引机制,确保其能够应对复杂的自然语言查询。它不仅提供传统的文本结果,还能返回结构化的答案和相关的多
- 深度剖析AI人工智能情感分析的算法原理
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构人工智能算法easyuiai
深度剖析AI人工智能情感分析的算法原理关键词:情感分析、自然语言处理、机器学习、深度学习、文本分类、情感词典、BERT摘要:本文将深入浅出地讲解AI情感分析的技术原理,从基础概念到核心算法,再到实际应用。我们将探索计算机如何理解人类情感,分析文本背后的情绪色彩,并介绍当前最先进的情感分析技术。通过生活化的比喻和代码实例,帮助读者全面理解这一AI领域的重要应用。背景介绍目的和范围情感分析(Senti
- 2021.8.18 感恩 Day 17
PollyGreat
假期习惯了睡到自然醒,今早来,离班会时间只有五分钟。幸好没有迟到,感谢苏苏的会议提醒,感谢小伙伴们的积极互动和认可;今天艳清教练在群里面分享的一段视频引发了我的一些思考,我有感而发,感恩小伙伴们的积极反馈和鼓励,感谢艳青教练加了我的微信;昨天晚上下了雨,今早起来空气清新,利用下雨前后锻炼身体,跑步6.5公里。又糯又甜的包谷,一直是我的最爱,感恩今天再次买到来自老家的苞谷,家乡的味道!孩子的同学约孩
- 数据分析领域如何借助AI人工智能升级
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶数据分析人工智能数据挖掘ai
数据分析领域如何借助AI人工智能升级关键词:数据分析、人工智能、机器学习、自动化分析、智能决策、数据预处理、预测分析摘要:本文系统阐述数据分析领域如何通过人工智能实现技术升级。从传统数据分析的瓶颈出发,解析AI驱动的核心技术架构,包括自动化数据预处理、智能特征工程、预测分析模型、自然语言处理在数据分析中的应用。通过具体算法实现、数学模型推导和项目实战案例,展示AI如何提升数据分析效率、挖掘数据深度
- 进阶向:基于Python的电脑硬件监控工具(GUI + 系统信息采集)
超级小识
Python进阶有趣的项目pythonphp开发语言
引言在科技飞速发展的今天,人工智能已经渗透到我们生活的方方面面,从基础的日常沟通到复杂的商业决策,智能技术的影响力正在以惊人的速度扩大。以自然语言处理为例,智能助手不仅能理解人类的日常对话,还能通过情感分析提供个性化的回应;在医疗领域,AI辅助诊断系统的准确率已达到专业医师水平,极大地提高了早期疾病筛查的效率。面对这场深刻的技术变革,理解其背后的逻辑与应用场景变得至关重要。从技术角度看,机器学习算
- 自然语言处理技术应用领域深度解析:从理论到实践的全面探索
1.引言:自然语言处理的技术革命与应用前景自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能领域的核心分支,正在以前所未有的速度改变着我们的数字化生活。从最初的规则基础系统到如今基于深度学习的大语言模型,NLP技术经历了从理论探索到实际应用的深刻变革。在当今信息爆炸的时代,人类每天产生的文本数据量达到了惊人的规模,如何让计算机理解、处理和生成人类语言,已经成为推
- C++ Qt6 CMake qml文件启动方式说明
令狐掌门
QML入门进阶教程c++QtQuickqml
在Qt6之后,Qt程序默认使用CMake进行构建,当然也可以使用qmake,本篇博客介绍Qt6.8之前和Qt6.8版本中QtQuick程序的启动方式。在QtQuick程序main.cpp里qml的文件启动分为两种:(1)直接加载qml文件,(2)加载qml模块,下面分别介绍这两种启动方式。方式1:直接启动qml文件大概在Qt6.5版本,qml程序的启动用的是qml文件路径启动,例如下面的代码#in
- 几种基本的逻辑思考方法
Miss亚姐聊职业生涯成长
1.逻辑:提出问题-论据事实1-论据事实2-论据事实3-结论观点2.整体到局部,先水平再垂直3.发现问题-寻找原因-建立实施方案-解决问题4.MECE原则,使遗漏和重复降到最低,在不出现遗漏和重复的情况下把握整体5.逻辑树——从层次和体系上对信息进行把握6.5W2H:验证信息是否有遗漏,制定计划书:What、Why、When、Who、Where+How、Howmuch7.从问题到能力的进展循环(A
- 学习日记-人工智能导论4-通过搜索进行问题求解1
Harrison_Huuu
学习日记-人工智能导论学习人工智能算法
目录3通过搜索问题进行问题求解3.1问题求解智能体3.1.1搜索问题和解3.1.2问题形式化3.2问题示例3.2.1标准化问题3.2.2真实世界问题3.3搜索算法3.3.1最佳优先搜索3.3.2搜索数据结构3.3.3冗余路径3.3.4问题求解性能评估3通过搜索问题进行问题求解当要采取的正确动作不是很明显时,智能体可能需要提前规划:考虑一个形成通往目标状态路径的动作序列。这样的智能体被称为问题求解智
- 大语言模型原理与工程实践:RLHF 实战框架
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:RLHF实战框架1.背景介绍1.1人工智能的崛起人工智能(AI)技术在过去几年中取得了令人瞩目的进展,尤其是在自然语言处理(NLP)和计算机视觉(CV)等领域。大型语言模型(LLM)的出现,使得人工智能系统能够生成逼真的自然语言输出,从而在多个应用场景中发挥重要作用。1.2大语言模型的挑战然而,训练出高质量的大语言模型并非易事。传统的监督学习方法需要大量高质量的标注数据,
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交