- Language Models are Few-Shot Learners: 开箱即用的GPT-3(三)
新兴AI民工
深度网络/大模型经典论文详解语言模型gpt-3人工智能
Result前面的两个部分介绍了背景,模型的情况和一些测试的方法,这一章就是展示各种尺寸的模型,包括175B的GPT-3在各种任务下的测试情况了。power-law第三章一上来,就用了14不同尺寸的模型来验证这个cross-entropy的线性提升与模型尺寸的指数关系(从最小的100000个参数,一只上升到175B的GPT-3,从10的5次方一直测试到10的11次方),从更大的尺度上来验证这个结论
- 使用多块AMD GPU通过Megatron-DeepSpeed进行大型语言模型的预训练
109702008
#ROCm语言模型人工智能学习
Pre-trainingalargelanguagemodelwithMegatron-DeepSpeedonmultipleAMDGPUs2024年1月24日,作者:DouglasJia在这篇博客中,我们将向你展示如何使用Megatron-DeepSpeed框架在多块AMDGPU上预训练GPT-3模型。我们还将展示如何使用你预训练的模型执行文本生成任务的推理。什么是Megatron-DeepSp
- 深入解析LoRA:低秩适应的高效大模型微调技术
Zhong Yang
大模型微调人工智能机器学习算法
1.背景与动机随着大语言模型(如GPT-3、Llama)的参数规模突破千亿级,传统全参数微调面临三大挑战:显存爆炸:微调70B模型需数千GB显存(如Llama-270B全微调需1.2TB显存)计算成本:全参数微调的计算量随模型规模呈二次增长过拟合风险:大规模模型对少量下游数据易产生过拟合LoRA(Low-RankAdaptation)由微软研究院提出,通过低秩矩阵分解技术,将微调参数量压缩至原模型
- GPT-3 面试题
简介1、GPT-3是什么?它是基于什么模型的?GPT-3是一种基于深度学习原理的语言预测模型。它是由OpenAI开发的,可以从互联网数据中生成任何类型的文本。它只需要一小段文本作为输入,就可以生成大量的准确和复杂的机器生成文本²⁴。GPT-3是基于Transformer模型的,使用了仅有解码器的自回归架构。它使用下一个单词预测目标进行训练¹²。GPT-3有8个不同的模型,参数从1.25亿到1750
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 在LLM快速迭代时代构建持久AI应用:架构设计与实施策略
引言:技术浪潮下的开发困境大型语言模型(LLM)的发展速度令人瞠目:从GPT-3到GPT-4,从Claude1到Claude3,从Llama1到Llama3,迭代周期正在从"年"缩短到"月"。作为一名AI应用开发者,我亲身经历了这种技术浪潮带来的挑战:昨天精心调优的prompt今天可能失效;上个季度集成的模型这个季度已有更优选择;刚完成的功能设计瞬间被新模型的能力超越。在如此快速变化的环境中,如何
- EgoAlpha/prompt-in-context-learning项目解析:Prompt Engineering核心技术指南
霍日江Eagle-Eyed
EgoAlpha/prompt-in-context-learning项目解析:PromptEngineering核心技术指南prompt-in-context-learningAwesomeresourcesforin-contextlearningandpromptengineering:MasteryoftheLLMssuchasChatGPT,GPT-3,andFlanT5,withup-
- MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
nine是个工程师
关注人工智能语言模型开源
开发|界面|引擎|交付|副驾——重写全栈法则:AI原生的倍速造应用流来自全栈程序员nine的探索与实践,持续迭代中。欢迎关注评论私信交流~在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。这个项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型,体积仅为GPT-3的七千分之一,却完整覆盖了从数据处理到模型
- 「论文导读」LLM高效推理与模型量化
雷羿 LexChien
prompt人工智能LLM论文阅读
1.论文背景作者:HugoTouvron等人,來自MetaAI来源:arXiv:2302.13971,2023年2月主题:介绍LLaMA系列模型(LLaMA-7B、13B、33B、65B),专为研究用途设计,强调高效能与低资源需求的语言模型推理。论文探讨如何通过优化训练数据、模型架构和推理技术,在有限硬体资源(如单一GPU或CPU)上实现高效推理。学术背景:随着大型语言模型(LLM)如GPT-3的
- 【人工智能】Maas(模型即服务)(Model as a Service)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。
本本本添哥
A-AIGC人工智能大模型人工智能云计算
ModelasaService(模型即服务,MaaS)是一种基于云计算的商业模式,通过API将预训练的人工智能模型作为服务提供给用户,使其无需自行管理底层基础设施即可调用AI能力。MaaS通过云原生架构和标准化服务,正在重塑AI技术的开发和消费方式,推动人工智能从“技术专有”向“普惠工具”转变。以下是其核心要点:1.定义与核心理念MaaS将大模型(如GPT-3、多模态模型等)封装为标准化服务,用户
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- 基于Google Gemini 探索大语言模型在医学领域应用评估和前景
知来者逆
LLM语言模型搜索引擎人工智能Gemini大语言模型医疗健康医疗
概述近年来,大规模语言模型(LLM)在理解和生成人类语言方面取得了显著的飞跃,这些进步不仅推动了语言学和计算机编程的发展,还为多个领域带来了创新的突破。特别是模型如GPT-3和PaLM,它们通过吸收海量文本数据,已经能够掌握复杂的语言模式。人工智能技术的迅猛发展不断推动着LLM的进化,并加速了这一领域的专业创新。这些进步是随着模型规模的扩大、数据量的增加以及计算能力的提升而逐步实现的,其中许多尖端
- LoRA微调详解:如何为AIGC模型节省90%显存
SuperAGI2025
AI大模型应用开发宝典AIGCai
LoRA微调详解:如何为AIGC模型节省90%显存关键词:LoRA、低秩适应、AIGC模型、参数高效微调、显存优化摘要:在AIGC(人工智能生成内容)领域,大模型(如GPT-3、LLaMA、StableDiffusion)的微调需要消耗海量显存,普通用户或企业难以负担。本文将深入解析LoRA(Low-RankAdaptation,低秩适应)这一参数高效微调技术,通过生活类比、数学原理、代码实战和应
- 《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量 ICCL 2022
365JHWZGo
情感对话论文阅读gpt-3共情回复上下文学习提示学习大模型
《论文阅读》GPT-3是否会产生移情对话?一种新的情境示例选择方法和用于生成同理心对话的自动评估度量ICCL2022前言贡献PromptIn-contextlearningSITSMEMOSITSM新的自动指标实验前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘~今天为大家带来的是《DoesGPT-3GenerateEmpatheticDialogues
- 【LangChain编程:从入门到实践】AI 大模型检索增强生成 RAG 实践
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LangChain编程:从入门到实践-AI大模型检索增强生成RAG实践关键词:LangChain,RAG,大语言模型,检索增强生成,向量数据库,嵌入模型,提示工程1.背景介绍在人工智能和自然语言处理领域,大语言模型(LargeLanguageModels,LLMs)的出现无疑是一个重大突破。像GPT-3、GPT-4这样的模型展现出了惊人的语言理解和生成能力,为各种应用场景带来了无限可能。然而,这些
- 大模型系列——提示词工程:从原理、实践到未来的一部系统性综述
猫猫姐
大模型人工智能大模型提示词
提示词工程:从原理、实践到未来的一部系统性综述摘要本文系统性地阐述了提示词工程(PromptEngineering)这一关键领域,它作为释放大语言模型(LLM)潜能的核心人机交互范式。报告从LLM的“下一个词预测”基本机制出发,追溯了提示词工程从GPT-3时代“上下文学习”的偶然发现到当前系统化、工程化的演进历程。本文深度剖析了多种高级提示框架,包括旨在激发模型逐步推理的“思维链”(Chain-o
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- 【大模型学习 | LORA 原理及实现】
九年义务漏网鲨鱼
语言模型pythonpytorch自然语言处理
LORA:LOW-RANKADAPTATIONOFLARGELAN-GUAGEMODELSGithub库:GitHub-microsoft/LoRA:Codeforloralib,animplementationof“LoRA:Low-RankAdaptationofLargeLanguageModels”GPT-3:175B微调模型变得十分的贵。作者提出利用Low-RankAdaption来冻结
- ⼤模型(LLMs)基础⾯
cv2016_DL
LLM大模型计算机视觉人工智能llama
1.⽬前主流的开源模型体系有哪些?⽬前主流的开源LLM(语⾔模型)模型体系包括以下⼏个:1.GPT(GenerativePre-trainedTransformer)系列:由OpenAI发布的⼀系列基于Transformer架构的语⾔模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在⼤规模⽆标签⽂本上进⾏预训练,然后在特定任务上进⾏微调,具有很强的⽣成能⼒和语⾔理解能⼒。2.BERT(B
- 二、大模型的能力(DataWhale大模型理论基础)
Y_fulture
大模型理论基础(DW组队学习)人工智能gpt-3nlp
大模型的能力一、概述本节主要是通过对GPT-3论文中的基准测试深入研究,从而获得关于GPT-3更深程度的认识我们应该知道,GPT-3的结果参差不齐:在某些任务上,比如语言建模,GPT-3大幅度超越了现有技术的最高水平;在其他任务上,GPT-3与训练有素,拥有大量标签数据的系统竞争时,却明显落后。造成上述现象的原因:GPT-3并未明确针对这些任务进行训练,它只是作为一个语言模型,被训练来预测下一个词
- 大语言模型:人工智能的“大脑革命“与未来图景
RockLiu@805
大模型实战人工智能语言模型自然语言处理
大语言模型:人工智能的"大脑革命"与未来图景——从GPT-3到AGI的演进之路引言:算力觉醒的时代2022年11月,ChatGPT的横空出世犹如一记惊雷,仅用5天时间就突破百万用户,两个月后月活用户突破1亿。这个现象级应用背后,是参数量高达1750亿的GPT-3.5大模型在支撑。这场由大语言模型(LargeLanguageModels,LLMs)引发的AI革命,正在重塑人类社会的认知边界。当我们与
- DeepSpeed 深度学习学习笔记:高效训练大型模型
主要参考官网文档,对于具体内容还需参考官方文档1.引言:为什么需要DeepSpeed?大型模型训练的挑战随着深度学习模型规模的爆炸式增长(从BERT的几亿参数到GPT-3的千亿参数,再到现在的万亿参数模型),传统的单GPU训练方式变得力不从心,即使是多GPU训练也面临巨大挑战:内存限制(MemoryWall):模型参数:模型的参数量巨大,例如一个1750亿参数的GPT-3模型,即使使用FP16精度
- LoRA、QLoRA是什么
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
人工智能机器学习深度学习
一:LoRA(Low-RankAdaptation,低秩适应)是一种高效的大模型参数微调技术,由Meta在2021年提出。它通过冻结预训练模型参数,仅训练少量新增的低秩矩阵,大幅减少了需要训练的参数量,同时保持接近全参数微调的效果。为什么需要LoRA?传统的全参数微调(Fine-tuning)需要更新大型语言模型的所有参数(如GPT-3有1750亿参数),这带来两个核心问题:计算资源需求极高:需要
- 深入探讨:如何使用OutputFixingParser修复LLM输出的解析错误并确保数据结构的完整性
m0_57781768
数据结构
深入探讨:如何使用OutputFixingParser修复LLM输出的解析错误并确保数据结构的完整性在当今的自然语言处理(NLP)领域,大型语言模型(LLM)如GPT-3等,已成为解决复杂问题的重要工具。这些模型能够生成自然语言文本,用于回答问题、生成内容或进行对话。然而,在将这些生成的文本转换为结构化数据格式(如JSON或Pydantic模型实例)时,可能会遇到解析错误。尤其是在文本格式不正确或
- AI 在创新创业比赛的 10 大应用:从创意激发到成果转化
大明者省
人工智能
1.创意灵感生成:基于大数据的创新点挖掘AI通过分析行业动态、市场痛点及前沿技术趋势,结合自然语言处理和生成式模型,为参赛者提供创新灵感。例如,利用GPT-3等语言模型,输入行业关键词,快速生成潜在的创业方向和产品概念。importopenai#设置OpenAIAPI密钥openai.api_key="your_api_key"defgenerate_innovation_ideas(keywor
- 【AI大模型】15、从GPT-1到GPT-3:大语言模型核心技术演进与能力涌现全解析
一、GPT-1:预训练微调范式的奠基者(2018)(一)架构创新:单向Transformer解码器的诞生GPT-1首次将Transformer架构应用于语言模型领域,其核心采用12层Transformer解码器,摒弃了传统RNN的递归结构,通过自注意力机制实现并行计算。与Encoder-Decoder架构不同,GPT-1仅使用解码器部分,每个解码器层包含:多头自注意力模块:8个头,每个头维度64,
- 从零开始掌握OpenAI的GPT-3 API:基础指南与实战示例
stjklkjhgffxw
gpt-3python
#从零开始掌握OpenAI的GPT-3API:基础指南与实战示例##引言在人工智能领域,OpenAI的GPT-3无疑是近年来最令人瞩目的技术突破之一。无论是用于生成自然语言文本、编写代码,还是提供智能对话服务,GPT-3都展示了其强大的能力。本篇文章旨在帮助初学者从零开始掌握GPT-3的API使用,了解其核心原理,并通过实战示例加深理解。##主要内容###1.什么是GPT-3?GPT-3(Gene
- 大模型全景解析:从技术突破到行业变革
敲键盘的小夜猫
大语言模型语言模型
目录一、引言:人工智能的新纪元二、大模型发展历史与技术演进1.早期探索期(2015-2017):从"人工智障"到初具规模RNN/LSTM架构时代(2013-2017)Transformer革命(2017)2.预训练模型崛起(2018-2020):范式转变BERT模型(2018)GPT系列初期(2018-2019)3.千亿参数时代(2020-2022):规模效应凸显GPT-3(2020):规模带来质
- AI大模型创业:如何实现未来盈利?
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
AI大模型,创业,盈利模式,商业应用,技术趋势,市场分析,案例研究1.背景介绍近年来,人工智能(AI)技术取得了飞速发展,特别是大规模语言模型(LLM)的出现,如GPT-3、LaMDA等,展现出强大的文本生成、理解和翻译能力,为各行各业带来了革命性的变革。随着AI技术的不断进步,越来越多的创业者看到了AI大模型的巨大商业潜力,纷纷涌入这个领域。然而,仅仅拥有先进的AI技术还不够,如何将AI大模型转
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S