- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- AI赋能DBA:数据库管理与运维的智能化工具全景解析
AI新视界
数据库人工智能dba
AI赋能DBA:数据库管理与运维的智能化工具全景解析在数据库规模爆炸式增长与运维复杂度指数级攀升的当下,AI技术正成为DBA突破效率瓶颈的核心武器。以下从异常检测、性能优化、智能运维、自然语言交互四大场景,精选2025年最具实战价值的AI工具,并附具体应用策略。一、异常检测与根因分析:从“被动救火”到“主动防御”1.SolarWindsDPAwithAI核心优势:通过机器学习分析历史性能数据,构建
- 物联网系统中-告警配置功能的定义
小赖同学啊
testTechnologyPrecious物联网strutsservlet
物联网系统中的告警配置功能是用户定义异常事件触发条件、通知方式和处理流程的核心管理模块。它通过对设备数据、系统状态的实时监控,在满足预设规则时主动推送风险信息,确保运维人员及时响应。以下是其详细定义与技术实现要点:一、核心定义告警配置功能允许用户通过可视化界面或API,为物联网系统设定异常检测规则与响应策略,包含三大核心要素:触发条件:基于设备数据/系统指标的逻辑判断(如温度>100℃持续5分钟)
- Java云原生安全矩阵:从代码到运行时的量子级防御
墨夶
Java学习资料6java云原生安全
核心架构:SpringSecurity与Envoy的“量子态防御”基于声明式安全的“波函数坍缩”API网关的“暗物质过滤”代码示例:SpringSecurity的量子态权限控制威胁检测的“超弦理论”基于行为分析的“量子隧穿”异常检测实时日志的“引力波监测”代码示例:机器学习驱动的异常行为检测加密与密钥管理的“暗能量引擎”敏感数据的“量子态加密”密钥的“黑洞事件视界”保护代码示例:BCrypt与JW
- 堡垒机操作行为异常检测的机器学习算法应用
一、传统检测模式的困境与机器学习的破局价值在数字化转型浪潮中,堡垒机作为运维安全的核心防线,面临着操作行为复杂度激增与检测能力滞后的双重挑战。传统检测手段主要依赖静态规则库与统计模型,存在三大致命缺陷:规则固化与误报泛滥:某金融机构曾因规则库未及时更新,导致运维人员正常批量操作被误判为“暴力破解”,单日误报量超2000次,消耗安全团队60%的精力。动态行为适应性弱:微服务架构下,运维人员访问路径呈
- AI原生应用开发:LLM的异常检测与处理
SuperAGI2025
AI大模型应用开发宝典AI-native人工智能ai
AI原生应用开发:LLM的异常检测与处理关键词:大语言模型(LLM)、异常检测、AI原生应用、错误处理、提示工程摘要:在AI原生应用中,大语言模型(LLM)已成为核心“大脑”,但它的“不靠谱”行为(如虚构事实、逻辑矛盾、敏感内容输出)常让开发者头疼。本文将用“修LLM的医生”视角,从异常类型识别、检测方法到处理策略,结合生活案例与代码实战,带你掌握LLM异常检测与处理的全流程,让你的AI应用更可靠
- 构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析
构建企业级大模型运行监控体系:健康度五级指标与实战部署路径全解析关键词:模型运行监控、健康度分级体系、DeepSeek、私有化部署、Prometheus、Grafana、异常检测、推理稳定性、性能观测、可视化大屏摘要:在DeepSeek大模型私有化部署的生产环境中,传统的“是否可用”监控已难以满足对模型稳定性、推理质量与异常风险的精细管理需求。为此,企业必须构建一套基于五级健康度模型的全维监控体系
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 上位机李工架构之一
zhxup606
架构
本篇将围绕半导体可靠性测试机上位机开发,提供一个系统性教程与学习路线,结合C#高级编程(反射、接口、抽象类、泛型、设计模式、集合、特性、索引、委托事件、匿名方法、多线程、面向对象等)和异步/同步对比,深入讲解如何高效开发上位机系统。同时,基于前文的实时数据可视化(WPF、LiveCharts2、WebSocket)、AI异常检测(ML.NET隔离森林)和异步任务调度(DAG调度、PID控制),本篇
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- 记录一个异常检测库
STO检测王
深度学习
https://github.com/openvinotoolkit/anomalib/tree/main关于一个异常检测库,包括最先进的算法和功能,如实验管理,超参数优化和边缘推理。
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- Syslog 日志分析与异常检测技巧
运维知识
系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Grep工具:精准日志文本搜索Grep是一个简单的搜索工具,在所有Linux发行版中都是内置的,也可用于Windows和Mac操作系统。你可以在命令行界面(CLI)中执行简单的文本查询,以提取所需的日志。语法
- 云原生SLO与AIOps的完美结合:智能运维新趋势
AI云原生与云计算技术学院
云原生ai
云原生SLO与AIOps的完美结合:智能运维新趋势关键词:云原生、SLO、AIOps、智能运维、服务等级目标、自动化运维、机器学习摘要:本文深入探讨云原生环境下服务等级目标(SLO)与智能运维(AIOps)的融合实践。通过解析SLO的核心原理与AIOps的技术架构,揭示两者在指标定义、异常检测、自动化修复等环节的协同机制。结合具体算法实现、数学模型分析与项目实战案例,展示如何通过数据驱动的智能运维
- 物联网与AI驱动的智能宿舍管理解决方案
本文还有配套的精品资源,点击获取简介:智能宿舍管理系统通过物联网、云计算和人工智能技术相结合,提高宿舍管理效率和学生住宿体验。该系统集成了智能门锁、传感器、能源管理系统等硬件设备,并与软件平台结合实现远程监控、自动化控制和数据分析。它还包含了实时监控、数据处理、远程操作、智能分析、异常检测和用户画像等功能,以确保高效管理、安全性和个性化服务。此外,系统设计注重加密通信、访问控制和隐私保护,以保障数
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- 网络安全项目实战:Python在网络安全中的应用
kleo3270
本文还有配套的精品资源,点击获取简介:网络安全项目工程是一个用Python编写的程序,重点在于实现特定的安全功能或进行网络安全性分析。本项目详细解析了如何使用Python执行特定命令以实现网络安全性,涵盖了网络编程、加密、数据分析、Web安全、认证授权、异常检测等技术。同时,还涉及到网络扫描、渗透测试以及入侵检测系统,使用Python库进行各种网络安全操作。1.Python在网络安全中的应用概述网
- 探秘 Drain3:一款高效日志异常检测神器
尚舰舸Elsie
探秘Drain3:一款高效日志异常检测神器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的日志异常检测系统,由LogPAI团队开发并开源。它旨在帮助运维人员和数据科学家快速发现系统日志中的异常行为,从而及时预测和处理潜在的问题,提升系统的稳定性和安全性。技术分析Drain3的核心技术是利用一维卷积神经网络(1DConvolutionalNeuralNet
- 机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术引言“数据中的异常往往蕴含着最有价值的信息!从金融欺诈检测到工业设备故障预警,从网络安全到医疗诊断,异常检测技术正在守护着各个领域的安全底线。”异常检测是机器学习中极具挑战性又极具价值的领域,它旨在识别数据中与大多数实例显著不同的异常模式。本文将系统讲解异常检测的核心算法,从传统的统计方法到前沿的深度学习技术,通过金融反欺诈
- 机器学习在后端告警系统中的应用:异常检测新思路
后端开发笔记
机器学习机器人人工智能ai
机器学习在后端告警系统中的应用:异常检测新思路关键词:后端告警系统、异常检测、机器学习、时序数据、误报率优化摘要:传统后端告警系统依赖固定阈值或简单规则,常因“大促误报”“节假日抽风”等问题被运维工程师吐槽。本文将带您探索如何用机器学习给告警系统装上“智能大脑”,从“机械哨兵”升级为“动态侦探”。我们将通过生活案例、算法原理解析、实战代码演示,一步步揭开机器学习在异常检测中的应用奥秘,帮您理解如何
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- Task01. 时序数据与 PyPOTS 介绍
三分梦~
python机器学习时序数据库数据挖掘
Task01.时序数据与PyPOTS介绍Task01.时序数据与PyPOTS介绍1.时间序列数据介绍️举例:与i.i.d数据的区别示例:1.1时间序列数据的类型1.2常见时间序列数据示例1.3时间序列研究与应用方向主要任务:1.预测(Forecasting)2.分类(Classification)3.聚类(Clustering)4.异常检测(AnomalyDetection)5.时间序列生成(Ge
- 人工智能混合编程实践:C++调用封装好的DLL进行图像超分重建(v2.0)
FriendshipT
人工智能混合编程实践人工智能c++开发语言超分辨率重建图像处理
人工智能混合编程实践:C++调用封装好的DLL进行图像超分重建(v2.0)前言相关介绍C++简介ONNX简介ONNXRuntime简介**核心特点**DLL简介**核心特点****创建与使用****应用场景****优点与挑战**图像异常检测简介应用场景前提条件实验环境项目结构C++调用封装好的DLL进行图像超分重建C++调用dll的相关代码framework.hpch.hcxx_infer_sr.
- 机器学习笔记【Week9】
kuiini
人工智能机器学习人工智能
一、异常检测问题动机在现实中,我们经常会遇到“异常检测”的任务:识别罕见、异常、不符合正常模式的数据点。例:工业设备故障检测,银行欺诈识别,异常流量检测等。核心特点:异常样本稀少,难以用监督学习训练模型。二、高斯分布建立算法前,需要假设每个特征满足高斯(正态)分布。在单一特征xjx_jxj上:p(xj;μj,σj2)=12π σjexp(−(xj−μj)22σj2)p(x_j;\mu_j,\si
- Web 架构之AI赋能:智能流量调度与异常检测
懂搬砖
web架构原力计划前端架构
文章目录摘要思维导图正文智能流量调度传统流量调度问题AI赋能流量调度原理AI流量调度实现方法应用案例异常检测传统异常检测局限AI异常检测原理AI异常检测实现方法应用案例总结摘要在当今数字化时代,Web架构面临着高并发流量和安全威胁的双重挑战。传统的流量调度和异常检测方法已难以满足日益复杂的业务需求。本文探讨了如何将人工智能(AI)技术应用于Web架构中的流量调度和异常检测,介绍了相关的技术原理、实
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- 智能数据桥梁:Java Excel适配器对接数据库表的AI赋能实践(支持主从表)
领码科技
低代码技能篇人工智能excelJava适配器Excel数据导入数据库转换主从表AI数据清洗
摘要随着企业数据量爆发式增长,如何高效、准确地将Excel数据导入数据库成为关键需求。本文聚焦“适配器模式”在Excel与Java数据库交互中的核心作用,结合AI技术实现智能数据识别、自动清洗与异常检测,打造灵活、高性能的导入解决方案。特别地,本文支持复杂业务中的主从表(主表与明细表)数据导入,实现先处理主表获取主键,再动态映射并插入明细表数据,事务管理确保多表数据一致性,错误处理覆盖跨表场景,提
- 西电【网络与协议安全】课程期末复习的一些可用情报
框架主义者
网络安全
来自2022年春的古早遗留档案,有人需要这个,我就发一下吧。网络安全法律法规大作业字数不少于3000字:(1)论文首页,标明论文题目、姓名、学号、电话和Email(2)论文格式:小四号字体,1.25倍行距复习重点试卷构成1020304010选择20填空(可有意思了)8简答2综合总体比较简单,综合题非常简单???不要看PPT,要看书给一个很简单的场景,协议,功能公钥、MAC、混合应用异常检测不考第一
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST