- 基于RSS与KNN的室内定位技术实现
火箭统
本文还有配套的精品资源,点击获取简介:室内定位技术对于智能建筑和物联网至关重要,在没有GPS信号的环境中尤其重要。RSS位置指纹法利用特定位置的无线信号强度来确定设备位置,而KNN算法能够基于信号强度找到最近的已知位置进行预测。本教程详细讲解了如何在MATLAB中通过”positioning_simulation.m”代码实现RSS位置指纹法与KNN算法的结合,涵盖数据预处理、算法实现、位置预测、
- 如何用Python才能进行数据分析?_运用pycharm做数据分析的步骤
2401_84254530
python数据分析pycharm
数据分析流程Python是数据分析利器,掌握了Python的编程基础后,就可以逐渐进入数据分析。一个完整的数据分析项目大致可分为以下五个流程:数据获取→数据存储→数据预处理→建模与分析→可视化分析1)数据获取一般有数据分析师岗位需求的公司都会有自己的数据库,数据分析师可以通过SQL查询语句来获取数据库中想要数据。Python已经具有连接sqlserver、mysql、orcale等主流数据库的接口
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 【科研绘图系列】R语言绘制边际云雨图散点图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制边际云雨图散点图加载R包library(tidyverse)library(ggplot2)library(ggpubr)library(ggpmisc)library(gghalves)library(aplot
- 机器学习概述
炀水
机器学习人工智能
一、机器学习算法与流程(一)、机器学习的主要流程:1.明确分析目标,2.数据收集,3.数据预处理,4.建模分析,5.结果评估,6.部署使用以及学习更新。1.明确分析目标:客观反映用户需求,通过对各类人群的深入分析,为相关部门制订资费、服务、市场策略提供基础。2.数据收集:收集相关的数据,充足、全面的高质量数据是机器学习的基础。3.数据预处理:数据可能存在着噪声、不一致、异常、个人隐私保护等各类问题
- 数据空间技术在智慧水库管理平台中的赋能
小赖同学啊
testTechnologyPrecious物联网
数据空间技术在智慧水库管理平台中的赋能:设备到应用的数据传输优化数据空间技术为智慧水库管理平台提供了革命性的数据传输、处理和安全保障能力。以下是数据空间技术在设备到应用数据传输过程中的全面赋能方案:数据空间赋能架构设计中心层区域层设备层数据预处理边缘计算本地决策协议转换数据聚合安全传输元数据管理数据治理访问控制数据服务长期存储业务应用系统数据分析平台数据仓库区域数据空间网关中心数据空间平台边缘数据
- 搜索引擎简介
搜索流程架构设计需兼顾海量数据处理能力、低延迟查询响应和结果相关性等。数据采集爬虫系统:从种子URL递归抓取,遵循robots协议(网站通过robots.txt声明哪些内容可抓取),避免违规抓取。数据预处理将原始数据(如HTML网页)转化为结构化、可索引的内容,提升后续索引和检索效率。网页解析与清洗:提取有效内容:从HTML中剥离标签(如),保留文本、标题、摘要、关键词等;排除广告、导航栏等冗余信
- 数据分析领域如何借助AI人工智能升级
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶数据分析人工智能数据挖掘ai
数据分析领域如何借助AI人工智能升级关键词:数据分析、人工智能、机器学习、自动化分析、智能决策、数据预处理、预测分析摘要:本文系统阐述数据分析领域如何通过人工智能实现技术升级。从传统数据分析的瓶颈出发,解析AI驱动的核心技术架构,包括自动化数据预处理、智能特征工程、预测分析模型、自然语言处理在数据分析中的应用。通过具体算法实现、数学模型推导和项目实战案例,展示AI如何提升数据分析效率、挖掘数据深度
- 阿里云代理商:云计算如何推动人工智能与大数据的结合
v_junsouyun06
阿里云代理商阿里云服务器阿里云优惠券云计算阿里云人工智能
目录一、云计算为人工智能提供强大的计算资源1.海量计算能力2.多层次的数据处理能力二、云计算促进大数据与人工智能的融合1.数据存储与访问的灵活性2.大数据分析与AI模型训练的协同三、云计算的可扩展性推动AI与大数据的深度融合1.按需资源扩展与高效利用2.跨云平台协同工作四、云计算的AI服务简化大数据分析流程1.自动化机器学习平台2.智能化数据预处理与分析工具五、云计算与AI推动行业应用创新1.智能
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- 第N8周:使用Word2vec实现文本分类
weixin_42245644
word2vec人工智能自然语言处理
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、数据预处理1.加载数据importtorchimporttorch.nnasnnimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pathlib,warningswarnings.filterwarnings("ignore")#忽略警告信息#w
- 数模国赛冲刺 | 数据预处理方法合集(数据清洗、数据变换与数据编码)
Easy数模
深度学习数学建模数据分析
数据预处理方法合集(数据清洗、数据变换与数据编码)数据预处理是数据科学和机器学习项目成功的基础步骤。通过适当的数据预处理,可以确保数据的质量、提升模型的性能,并为后续的建模和分析打下坚实的基础。忽视数据预处理可能导致模型训练失败或性能不佳,甚至得出错误的结论。因此,数据预处理在数据驱动的项目中是不可或缺的步骤,接下来我们将详细地介绍具体的方法,文末可获得全文PDF!目录数据清洗缺失值处理异常值处理
- 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题(完整建模过程附python代码)
空脑小白
数学建模数学建模
问题一:数据预处理与基础统计分析(以stroke.csv为例)一、建模目标对stroke.csv数据进行预处理、特征统计和可视化分析;找出影响中风的关键因素,为后续建模提供数据依据。二、建模过程(1)数据理解stroke.csv包含如下字段(常见字段如下,实际以文件为准):gender:性别age:年龄hypertension:是否患高血压(0:否,1:是)heart_disease:是否患心脏病
- (11)机器学习小白入门YOLOv:YOLOv8-cls epochs与数据量的关系
YOLOv8-clsepochs与数据量的关系(1)机器学习小白入门YOLOv:从概念到实践(2)机器学习小白入门YOLOv:从模块优化到工程部署(3)机器学习小白入门YOLOv:解锁图片分类新技能(4)机器学习小白入门YOLOv:图片标注实操手册(5)机器学习小白入门YOLOv:数据需求与图像不足应对策略(6)机器学习小白入门YOLOv:图片的数据预处理(7)机器学习小白入门YOLOv:模型训练
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 30天打牢数模基础-支持向量回归SVR讲解
您好啊数模君
30天打牢数模基础回归支持向量回归SVR数学建模2025数学建模国赛
案例代码实现一、代码说明本代码模拟了城市夏季10天的电力负荷数据(240条),使用支持向量回归(SVR)解决非线性回归+抗异常值问题。核心步骤包括:模拟符合非线性关系(温度U型曲线、小时高峰)和异常值的数据;数据预处理(特征标准化);网格搜索调参(优化C、gamma、epsilon参数);模型训练与评估(对比SVR与线性回归的性能);结果可视化(真实值vs预测值、误差分布)。二、完整代码impor
- 使用PyTorch进行猫狗图像分类实战指南
op3721
本文还有配套的精品资源,点击获取简介:本文详细介绍了如何利用PyTorch框架来执行一个猫狗分类任务。从数据预处理、构建全连接网络模型、训练过程到评估指标等方面进行了全面阐释。内容涵盖了图像数据的收集、标准化处理,以及如何使用DataLoader类来提高数据加载效率。接着,本文讲解了如何构建和定义网络结构,选用交叉熵损失函数,并利用SGD或Adam优化器进行权重更新。在训练模型时,我们会进行多个e
- 图像分类实战:基于ResNet实现猫狗识别
风亦辰739
从零开始掌握深度学习:理论+实战分类数据挖掘人工智能
图像分类实战:基于ResNet实现猫狗识别(含完整PyTorch代码)图像分类是计算机视觉中最基础也是最经典的任务之一。今天我们将带你实战体验如何使用PyTorch和ResNet构建一个猫狗识别系统。从数据预处理、模型构建、训练调优到模型保存和预测,每一步都细致讲解,带你快速上手!一、任务目标使用Kaggle猫狗数据集进行图像分类;构建基于ResNet18的分类模型;实现完整训练与验证流程;进行单
- SAP Word 模板与 XML 数据流合并过程深度剖析——以表格结构为例
汪子熙
ABAP百科全书wordxmlCRMABAPNetWeaverSAP
在CRMWebClientUI的Office集成功能里,Word模板与XML数据流的动态合并,是合同、报价单等文档自动生成的技术核心。本文结合SAP官方示例代码与OpenXML规范,从模板绑定、数据预处理、运行时递归填充到实际排错技巧,全景展示表格结构合并的幕后细节,并给出一段源自真实项目的实战案例,帮助读者迅速掌握这一看似神秘的“魔术”。(document567.rssing.com,docum
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- Python训练 + Go优化 + C#部署:端到端AI模型的跨语言实践
威哥说编程
人工智能学习资料库pythongolangc#
在现代AI应用中,如何高效地训练、优化、并最终部署AI模型是一项复杂且具有挑战性的任务。在这一过程中,选择合适的编程语言和工具可以显著提高效率和系统的性能。Python作为AI领域的主流语言,具有丰富的深度学习框架(如PyTorch和TensorFlow),在模型训练方面处于领先地位。然而,针对计算密集型任务(如数据预处理、加密等),Go语言因其高效的并发处理和出色的性能,成为优化计算的理想选择。
- 机器学习数据预处理阶段为什么需要——归一化处理
参考:https://www.cnblogs.com/bjwu/p/8977141.html通常,在DataScience中,预处理数据有一个很关键的步骤就是数据的标准化。这里主要引用sklearn文档中的一些东西来说明,主要把各个标准化方法的应用场景以及优缺点总结概括,以来充当笔记。提升模型精度在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数
- 【科研绘图系列】R语言绘制堆积图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制堆积图加载R包library(tidyverse)library(ggplot2)library(ggsignif)library(reshape)library(ggalluvial)library(ggprism
- 横幅检测数据集-1500张图片 智慧城市管理 活动现场管理 商业广告分析
横幅检测数据集-1500张图片已发布目标检测数据集合集(持续更新)️横幅检测数据集介绍数据集概览检测目标类型应用场景数据样本展示使用建议1.数据预处理优化2.模型训练策略3.实际部署考虑4.应用场景适配5.性能优化建议数据集特色商业价值技术实现路径模型选择建议特殊技术考虑集成方案建议应用效果评估性能指标建议业务价值指标YOLOv8训练实战1.环境配置安装YOLOv8官方库ultralytics2.
- 综合智能监测系统设计:有害气体实时检测与管理
黑泡尖子
本文还有配套的精品资源,点击获取简介:在工业化进程中,有害气体的排放对人类健康和环境构成威胁。设计一种智能监测系统,利用传感器技术、物联网和数据分析等,实时监控环境中有害气体的浓度,确保生产安全和环保。该系统涵盖硬件构建、软件开发和数据处理等环节,并提供高效准确的监测能力。系统集成了无线通信模块进行数据传输,具备数据预处理和分析能力,能够进行阈值设定与预警响应。用户界面友好,系统具有良好的集成性、
- 机器学习中的数据预处理:从入门到实践
耐思nice~
机器学习由浅入深-吴恩达机器学习人工智能
在当今的智能时代,机器学习已经渗透到我们生活的方方面面。比如我们常用的推荐系统,它能根据我们的浏览记录精准推送喜欢的商品或视频,这背后就离不开机器学习的支撑。而一个优秀的机器学习模型,离不开高质量的数据,数据预处理正是保证数据质量的关键环节,它就像烹饪前的食材处理,直接影响着最终“菜品”的口感,也就是模型的性能。今天,我们就来全面学习机器学习中数据预处理的关键步骤。一、数据预处理的重要性数据预处理
- 【科研绘图系列】R语言绘制配对散点图连线柱状图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制配对散点图连线柱状图加载R包library(tidyverse)library(ggplot2)library(ggsignif)library(ggpubr)library(patchwork)library(ggprism
- 【科研绘图系列】R语言绘制柱状散点连线图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制柱状散点连线图加载R包library(tidyverse)library(ggplot2)library(ggsignif)library(ggpubr)library(patchwork)library(ggprism
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR