- 信息学竞赛中AC、WA、RE、CE、TLE、MLE、PE、OLE、分别什么意思
罗小黑妖灵会馆
c++
信息学竞赛中AC、WA、RE、CE、TLE、MLE、PE、OLE、分别什么意思ACAccepted答案正确/通过WAWrongAnswer答案错误RERuntimeError运行时错误这表明你的程序在运行过程中因为出锅而崩溃了,通常可能是访问非法内存等问题,出现这个提示但你还能过样例的话,大概率是数组没开够,仔细检查一下。CEComplieError编译错误这表明你的程序没有通过编译。如果在本
- MLE最大似然估计:数据驱动的概率模型参数推断基石
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法MLE参数估计概率论
从样本中还原未知分布的本质规律本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心思想与数学定义最大似然估计(MaximumLikelihoodEstimation,MLE)是频率学派的参数估计方法,其核心思想为:选择使观测数据出现概率最大的参数值。给定独立同分布样本X={x1,x2,…,xn}
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- 机器学习3——参数估计之极大似然估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能算法
参数估计问题背景:P(ωi∣x)=p(x∣ωi)P(ωi)p(x)p(x)=∑j=1cp(x∣ωj)P(ωj)\begin{aligned}&P\left(\omega_i\mid\mathbf{x}\right)=\frac{p\left(\mathbf{x}\mid\omega_i\right)P\left(\omega_i\right)}{p(\mathbf{x})}\\&p(\mathbf
- EM求解的高斯混合模型——Q函数的极大似然估计(九)
phoenix@Capricornus
概率论机器学习人工智能
先导:EM求解的混合密度模型——Q函数p(x∣θk)→N(x∣μk,Σk)p(\boldsymbol{x}\mid\boldsymbol{\theta}_k)\rightarrow{N}(\boldsymbol{x}\mid\boldsymbol{\mu_k},\boldsymbol{\Sigma}_k)p(x∣θk)→N(x∣μk,Σk)由上述推导即可获得高斯混合模型的EM算法:在每步迭代中,先
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- 第1章: 伯努利模型的极大似然估计与贝叶斯估计
Dawn³
python
伯努利模型的极大似然估计与贝叶斯估计importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportbeta,bernoullifromscipy.optimizeimportminimize_scalar#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']#使用黑体plt.rcParam
- 参数估计:从样本窥见总体
Algo-hx
概率论与数理统计概率论机器学习人工智能
目录引言7参数估计7.1参数估计的基本概念7.1.1估计问题类型7.1.2估计量评价标准7.2点估计方法7.2.1矩估计法(MME)7.2.2最大似然估计(MLE)7.3区间估计原理7.3.1置信区间定义7.3.2枢轴量法(关键步骤)7.4单正态总体参数区间估计7.4.1均值μ\muμ的置信区间7.4.2方差σ2\sigma^2σ2的置信区间7.5双正态总体参数区间估计7.5.1均值差μ1−μ2\
- 逻辑回归中的损失函数:交叉熵损失详解与推导
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶逻辑回归算法机器学习ai
逻辑回归中的损失函数:交叉熵损失详解与推导关键词:逻辑回归、交叉熵损失、损失函数、二分类、多分类、极大似然估计、梯度下降摘要:本文深入解析逻辑回归中核心的交叉熵损失函数,从信息论基础出发,逐步推导二分类与多分类场景下的损失函数形式,结合极大似然估计揭示其理论本质。通过Python代码实现损失函数计算与梯度推导,辅以实战案例演示完整训练流程。同时对比均方误差等其他损失函数,阐释交叉熵在分类问题中的独
- 极大似然估计例题——均匀分布的极大似然估计
phoenix@Capricornus
PR书稿概率论线性代数机器学习
设总体XXX服从均匀分布U(a,b)U(a,b)U(a,b),其中aaa和bbb是未知参数,取样本观测值为x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn。求参数aaa和bbb的最大似然估计。解总体XXX的概率密度函数为f(x;a,b)={1b−a,a≤x≤b,0,其他.f(x;a,b)=\begin{cases}\frac{1}{b-a},&a\leqx\leqb,
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
江湖小妞
概率论
最大似然估计与最小二乘估计的区别标签(空格分隔):概率论与数理统计最小二乘估计对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。设Q表示平方误差,Yi表示估计值,Ŷi表示观测值,即Q=∑ni=1(Yi−Ŷi)2最大似然估计对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者
- 【课堂笔记】EM算法
zyq~
机器学习算法笔记机器学习EM算法GMM概率论人工智能
文章目录背景极大似然估计隐变量高斯混合模型EM算法合理性分析相关好文章背景 EM算法(期望最大化算法,Expectation-MaximizationAlgorithm)是一种迭代优化算法,用于在含有隐变量的概率模型中估计最大似然参数。 这是概括性的定义,下面我会解释其中的名词并用具体例子来引入EM算法。极大似然估计 先复习一下极大似然函数估计,我们假设数据满足某个分布(例如正态分布N(μ,
- 极大似然估计
phoenix@Capricornus
模式识别中的数学问题机器学习算法概率论
最大似然估计法最大似然估计又称极大似然估计,是一种利用给定样本观测值来评估模型参数的方法,其基本原理为:利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。分两种情况介绍最大似然估计的方法和步骤。离散型总体设离散型总体X的分布律为P(X=x)=p(x;θ),P(X=x)=p(x;\theta),P(X=x)=p(x;θ),其中θ∈Θ\theta\in\Thetaθ∈
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- 区间合并的应用:格子染色(2019美团面试题)
evy
算法
上题先:其实我一开始是用的离散化再加上二维前缀和做的,我将每个点的的x,y值都进行离散化,虽然避免了开一个2e9*2e9的数组,但是离散化后的a数组也需要2e5*2e5理所当然的MLE了,虽然后面想想我这个离散化后从根本上就是错误的,因为离散化后的数组并不能将原本线段的重合给还原出来。后面看了题解才发现,要用到二维的区间合并,然后再判重。与一维的区间合并不同的就是要在每个区间的存储时加上其行号/列
- Level3 — PART 4 机器学习算法 — 朴素贝叶斯
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型机器学习人工智能朴素贝叶斯NaiveBayes
目录贝叶斯定理朴素贝叶斯模型(NaiveBayesModel)估计离散估计极大似然估计案例朴素贝叶斯扩展高斯贝叶斯分类器原理应用源码分析伯努利贝叶斯分类器原理源码分析多项朴素贝叶斯分类器半朴素贝叶斯分类器模拟题CDALEVELIII模拟题(一)CDALEVELIII模拟题(二)贝叶斯定理贝叶斯定理由英国数学家贝叶斯(ThomasBayes1702-1761)发展,用来描述两个条件概率之间的关系,比
- VAE的学习及先验知识
butterfly won't love flowers
图像生成机器学习人工智能
笔记1、先验、后验、似然、证据2、极大似然估计3、最大后验估计4、贝叶斯均值估计5、KL散度6、VAE1、先验、后验、似然、证据对于给定的数据,我们假设其是服从某个数据分布的。θθθ决定了数据的分布,而数据是从这个分布中采样得到的。但是在统计学习中,我们通常不知道真实的参数θθθ,因此转向通过数据来推断它,也就是后面要说的参数估计。在此之前先讲些基础的术语。先验P(θθθ):先验就是在看到数据之前
- 机器学习(2)——逻辑回归
追逐☞
机器学习机器学习逻辑回归人工智能
文章目录1.什么是逻辑回归?2.核心思想3.逻辑回归模型的训练:4.参数估计(损失函数与优化)4.1.**损失函数:**4.2.极大似然估计(MLE)4.3.优化方法5.决策边界6.模型评估指标7.假设与适用条件8.逻辑回归的优缺点:9.逻辑回归的常用应用:10.示例代码1.什么是逻辑回归?逻辑回归(LogisticRegression)是一种用于分类问题的统计方法,特别是用于二分类问题。尽管其名
- 最小二乘法多元线性回归_数学基础2:线性回归&最小二乘法
喂书长大的孩子
最小二乘法多元线性回归
主要介绍了最小二乘法的相关内容,包括最小二乘法的矩阵表达和推导,从概率视角来观察最小二乘法(加入高斯噪声的最小二乘估计),正则化(包括一阶正则:lasso,二阶正则ridge也就是岭回归等内容),最后介绍了从贝叶斯视角来看岭回归的思路和结论。最小二乘法的矩阵表达形式概率视角看线性回归加入高斯噪声进行极大似然估计,可以发现,当噪声服从高斯分布的时候,最小二乘法与线性回归的极大似然估计的结论是等价的。
- 【面经&八股】搜广推方向:面试记录(十三)
秋冬无暖阳°
搜广推等—算法面经面试职场和发展
【面经&八股】搜广推方向:面试记录(十三)文章目录【面经&八股】搜广推方向:面试记录(十三)1.自我介绍2.实习经历问答3.八股之类的问题4.编程题5.反问6.可以1.自我介绍。。。。。。2.实习经历问答挑最熟的一个跟他讲就好了。一定要熟~3.八股之类的问题极大似然估计和贝叶斯估计,区别与联系建议参考这个链接transformer为什么要使用多头关键点在于集成,使语义更加完善圆上随机去三个点,三个
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- 图像算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
01.图像算法图像算法工程师的技术图谱和学习路径涵盖了多个技术领域,从基础知识到高级算法,涉及计算机视觉、深度学习、图像处理、数学和编程等多个方面。以下是图像算法工程师的技术图谱和学习路径的详细总结。1.基础数学与编程数学基础:线性代数:矩阵运算、特征值、特征向量、奇异值分解(SVD)等概率论与统计:概率分布、贝叶斯定理、最大似然估计(MLE)、假设检验等微积分:导数、梯度、最优化方法(梯度下降、
- 变分边界详解
半度、
算法
起因当时看VAE论文时有这么一段,但是看完直接一头雾水,这都那跟哪,第一个公式咋做的变换就变出那么一堆。网上搜了很多博客都语焉不详,只好自己来写一篇,希望能解答后来人的疑惑。公式1参考文章:证据下界(ELBO)、EM算法、变分推断、变分自编码器(VAE)和混合高斯模型(GMM)解释一下,我们之前都是用MLE计算损失,logp(x∣θ)logp(x|\theta)logp(x∣θ)和logpθ(x)
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- matlab mle 优化,MLE+: Matlab Toolbox for Integrated Modeling, Control and Optimization for Buildings...
Simon Zhong
matlabmle优化
摘要:FollowingunilateralopticnervesectioninadultPVGhoodedrat,theaxonguidancecueephrin-A2isup-regulatedincaudalbutnotrostralsuperiorcolliculus(SC)andtheEphA5receptorisdown-regulatedinaxotomisedretinalgan
- 洛谷的各种状态
Digital_Enigma
理论篇Python算法c++
启动一下洛谷能把我创亖今天来盘点一下洛谷的各种状态各个评测状态首先是我们最最最喜欢的AC:英文全名Accept,意思是程序通过。接下来是比较好对付的(自然也是对于我来说)WA:英文全名WrongAnswer,意思是答案错误。CE:英文全名CompileError,意思是编译错误。TLE:英文全名TimeLimitExceeded,意思是超出时间限制。MLE:英文全名MemoryLimitExcee
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- 邻接表
iCrEjfuhhChXjVz
C++新心复习
邻接表在数据量很大的时候,邻接表会存储不下,问什么呢?因为有很多无效的存储空间一个稀疏图,邻接矩阵有无效的存储,所以会MLE。所以就得用到邻接表了!邻接表有两种写法:一种是用数组写的,另一种是vector!今天我们来学数组版本~我们需要精准地访问下一个点~用链表的头插法作为思路材料需要记录一个nxt数组,表示下一个(万能头不要用next奥~)如果到达了最后一个节点,nxt就是-1。我们还得知道首节
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr