- 大模型量化终极对决:FP8 vs AWQ INT4,谁才是性能与精度的王者?
曦紫沐
大模型人工智能大模型量化FP8AWQ_INT4
摘要在大模型部署与优化中,量化技术是突破性能瓶颈的关键。FP8量化与AWQINT4量化作为当前主流方案,分别以“高精度”和“极致压缩”为核心优势。本文通过表格对比二者的数据格式、精度损失、硬件依赖及适用场景,助您在不同需求下精准选择最优方案。一、数据格式:浮点与整数的底层差异FP8量化采用浮点数(FP8),包含E4M3(4位阶码+3位尾数)和E5M2(5位阶码+2位尾数)两种格式,保留动态范围;而
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- 【Ollama】大模型本地部署与 Java 项目调用指南
科马
LLMjava开发语言llama语言模型
Ollama大模型本地部署与Java项目调用指南一、引言背景介绍Ollama是一个轻量级的大语言模型部署工具,支持快速在本地拉取、运行主流开源模型(如LLaMA3、Mistral、Gemma等)。它简化了模型部署的过程,内置RESTfulAPI,使得开发者可以像调用本地服务一样使用强大的大模型能力。本文将介绍如何在本地部署Ollama模型,并通过Java项目调用Ollama提供的API接口,实现本
- K8s 集群成本优化实战:基于 Spot 实例与模型量化的
女码农的重启
java开发语言pythonJAVA人工智能kubernetes
在Kubernetes集群运维中,成本控制与服务稳定性往往存在博弈——根据CNCF2024年报告,超过67%的企业K8s集群资源利用率低于50%,年浪费成本平均达12万美元。对于中小团队而言,通过技术手段降低运行成本更是生存刚需。本文聚焦两类核心优化手段:Spot实例的弹性调度与模型量化的资源压缩,结合生产环境实测数据,提供可落地的K8s成本优化方案,包含完整的配置模板与量化指标对比。一、Spot
- 【代码问题】【模型部署】部署千问时,ImportError: Cannot import available module of Qwen2_5_VLForConditionalGeneration
Catching Star
pythonpytorch开发语言
多半是环境的问题,最主要的是python版本要高python==3.12.9accelerate==1.8.1pipinstallqwen-vl-utils[decord]==0.0.8peft==0.14.0transformers==4.52.3torch==2.7.0torchvision==0.22.0modelscope==1.27.1
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- AI-调查研究-38-多模态大模型量化 主流视觉语言任务的量化评估策略分析
武子康
AIDeepSearch人工智能ai职场和发展职场发展个人开发程序人生语言模型
点一下关注吧!!!非常感谢!!持续更新!!!AI篇持续更新中!(长期更新)AI炼丹日志-30-新发布【1T万亿】参数量大模型!Kimi‑K2开源大模型解读与实践,持续打造实用AI工具指南!Java篇正式开启!(300篇)目前2025年07月21日更新到:Java-77深入浅出RPCDubbo负载均衡全解析:策略、配置与自定义实现实战MyBatis已完结,Spring已完结,Nginx已完结,Tom
- stable diffusion No module named taming
图片gan模型部署报错。pipinstalltaming-transformersImportError:cannotimportname'VectorQuantizer2'from'taming.modules.vqvae.quantize',用https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vq
- 【知识扫描】量化中的零点
zjun3021
量化零点对称量化非对称量化
在量化(尤其是深度学习模型量化)中,零点(ZeroPoint)是一个关键概念,用于解决整数表示中没有直接对应浮点数0的问题。它是整数域中与浮点数0最接近的整数值,主要作用是确保浮点数到整数的映射能正确处理负值和零点偏移。举个例子:如何将[-0.8,1.2]映射到[0,255]的整数范围内,以便Uint8能够表示?一、为什么需要零点?在低精度量化(如8位整数INT8)中,整数范围通常是有符号的[-1
- 【知识扫盲】per-token/per-channel/per-token量化
zjun3021
量化per-tokenper-channelter-tensor
per-token、per-channel和per-tensor量化的区别。这三种是模型量化中常见的不同粒度策略,主要区别在于它们应用量化的维度不同。以下是它们的详细对比:1.定义与核心区别量化类型量化维度主要应用对象计算粒度典型场景Per-Tensor整个张量权重/激活所有数据共享一组(scale,zero_point)简单硬件支持(如早期移动端)Per-Channel张量的每个通道权重(如卷积
- AI产品经理面试宝典第48天:产品设计与用户体验优化策略
TGITCIC
AI产品经理一线大厂面试题产品经理AI产品经理面试大模型产品经理面试大模型面试AI面试AI产品
1.用户体验分析与产品设计逻辑1.1问:如何通过用户反馈优化AI产品体验?答:建立反馈闭环机制:通过应用内评分、用户访谈、行为埋点三维度收集数据,例如某语音助手产品通过NLP分析用户纠错语句,发现"误唤醒"问题占比37%;优先级排序模型:采用Kano模型量化需求,将"语音响应延迟降低至200ms内"列为基本型需求,"方言识别"设为期望型需求;敏捷迭代验证:针对某智能客服产品,采用灰度发布策略,先在
- 论文笔记:EMR-MERGING: Tuning-Free High-Performance Model Merging
UQI-LIUWJ
论文笔记论文阅读
2024neurips1intro随着HuggingFace、timm和torchvision等开源仓库的发展,预训练与微调模型的数量激增,这导致模型部署的存储和成本负担加重。多任务学习(MTL)通过联合训练多数据集来部分缓解上述问题,但它存在以下缺陷:(i)计算成本高;(ii)隐私数据限制导致数据不可获取因此,近年来出现了**模型融合(modelmerging)**方法,试图通过权重合并的方式绕
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- 程序员管理与AIStarter开发:如何避免需求Bug,提升项目效率
ai_xiaogui
人工智能智能体国际化AI平台bug程序员管理AIStarter需求沟通避免BugAI模型一键部署教程
大家好,我是熊哥!今天聊聊程序员管理和AIStarter开发中的经验教训。创业公司项目常因需求不清出Bug,比如“管理员删管理员”这种低级错误,引发用户不满。熊哥亲测:程序员管理关键在于明确需求!通过整理需求文档、双向确认、开会逐条对齐,熊哥团队从Bug频发到第二个月问题骤减,AIStarter发布稳定。AIStarter专注AI模型部署(如Ollama),一键安装,免费为主,市场反馈超棒!总结:
- 边缘计算与量子模型优化驱动医疗诊断新突破
内容概要在医疗人工智能领域,边缘计算与量子模型优化的协同演进正重构诊断系统的技术范式。通过将计算节点前置至医疗设备端,边缘架构有效解决了传统云端模型面临的实时性瓶颈,配合量子优化算法对复杂特征空间的快速寻优能力,使得CT、MRI等高维影像数据的解析效率提升显著。值得关注的是,框架选型直接影响着模型部署的可行性——TensorFlow在移动端推理优化方面的工具链完备性,与PyTorch动态图机制对迭
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- *SFT深度实践指南:从数据构建到模型部署的全流程解析
大千AI助手
人工智能Python#OTHER人工智能深度学习算法大模型SFT微调Lora
一、SFT技术原理与定位核心定义SFT是在预训练语言模型(如LLaMA、GPT)基础上,利用标注数据优化模型以适应特定任务的技术。其本质是通过调整模型参数,将通用语言能力迁移至专业领域(如法律、医疗)或任务(如对话生成、代码补全)。与预训练的区别预训练:使用无标注数据(如维基百科)学习通用表征,消耗千亿级token算力。SFT:使用标注数据(如指令-答案对)进行任务适配,成本仅为预训练的1/100
- YOLO11-obb使用C++及trt进行推理(详细版)
范男
c++目标检测计算机视觉YOLO图像处理
针对YOLO的使用.engine权重及C++代码进行推理使用TensorRT-YOLO项目网站是:https://github.com/laugh12321/TensorRT-YOLO可以直接选择git或者下载下来gitclonehttps://github.com/laugh12321/TensorRT-YOLOcdTensorRT-YOLO1.编译主程序教程网址是:https://github
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- 借助 Amazon SageMaker Catalog 功能,简化从数据到洞察的路径
在数据驱动的时代,企业常陷于数据孤岛、特征重复开发、模型溯源困难等困境。AmazonSageMakerCatalog应运而生,作为统一的数据和特征治理中心,它能打通从原始数据到模型部署的全链路,显著加速数据科学项目落地。一、痛点:数据科学项目中的常见瓶颈数据发现困难:数据分散在S3、Redshift等不同存储中,缺乏统一视图特征管理混乱:特征工程脚本散落各处,无法复用和共享模型溯源缺失:无法追踪模
- 机器学习专栏(62):手把手实现工业级ResNet-34及调优全攻略
目录一、ResNet革命性突破解析1.1残差学习核心思想1.2ResNet-34结构详解二、工业级Keras实现详解2.1数据预处理流水线2.2完整模型实现三、模型训练调优策略3.1学习率动态调整3.2混合精度训练四、性能优化技巧4.1分布式训练配置4.2TensorRT推理加速五、实战应用案例5.1医疗影像分类5.2工业质检系统六、模型可视化分析6.1特征热力图6.2参数量分析七、常见问题解决方
- 大数据集成方案对比:Kafka vs Flume vs Sqoop
AI天才研究院
计算AI大模型应用入门实战与进阶AgenticAI实战大数据kafkaflumeai
大数据集成方案对比:KafkavsFlumevsSqoop关键词:大数据集成、Kafka、Flume、Sqoop、流处理、批量迁移、日志收集摘要:在大数据生态中,数据集成是连接数据源与数据处理平台的关键环节。本文深度对比Kafka、Flume、Sqoop三大主流集成工具,从核心架构、技术原理、适用场景到实战案例展开系统性分析。通过数学模型量化性能差异,结合实际项目经验总结选型策略,帮助开发者根据业
- Python Gradio:快速搭建人脸识别应用
Python编程之道
Python人工智能与大数据Python编程之道python开发语言ai
PythonGradio:快速搭建人脸识别应用关键词:Python,Gradio,人脸识别,深度学习,计算机视觉,交互式应用,模型部署摘要:本文详细介绍了如何使用Python的Gradio库快速搭建一个交互式的人脸识别应用。我们将从基础概念出发,逐步讲解人脸识别的核心算法原理、Gradio的界面设计方法,并通过完整的项目实战演示如何将深度学习模型部署为可交互的Web应用。文章包含详细的代码实现、数
- ONNX模型使用指南:从零开始掌握跨领域模型部署
ONNX模型使用指南:从零开始掌握跨领域模型部署ONNX模型作为一种开放式的神经网络交换格式,已成为AI模型部署的行业标准。当您获得一个没有使用说明的ONNX模型时,可以通过系统化的分析和部署流程,使其在不同领域发挥作用。本文将详细阐述如何分析模型结构、配置运行环境、准备特定领域输入数据、执行推理并处理结果,同时提供图像分类、自然语言处理、医疗影像分析、金融风控和自动驾驶等领域的具体应用示例,帮助
- 英伟达Triton 推理服务详解
leo0308
基础知识机器人Triton人工智能
1.TritonInferenceServer简介TritonInferenceServer(简称Triton,原名NVIDIATensorRTInferenceServer)是英伟达推出的一个开源、高性能的推理服务器,专为AI模型的部署和推理服务而设计。它支持多种深度学习框架和硬件平台,能够帮助开发者和企业高效地将AI模型部署到生产环境中。Triton主要用于模型推理服务化,即将训练好的模型通过
- PyTorch & TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)
阿牛的药铺
算法移植部署pytorchtensorflowfpga开发
PyTorch&TensorFlow速成复习:从基础语法到模型部署实战(附FPGA移植衔接)引言:为什么算法移植工程师必须掌握框架基础?针对光学类产品算法FPGA移植岗位需求(如可见光/红外图像处理),深度学习框架是算法落地的"桥梁"——既要用PyTorch/TensorFlow验证算法可行性,又要将训练好的模型(如CNN、目标检测)转换为FPGA可部署的格式(ONNX、TFLite)。本文采用"
- 模型实战(21)之 C++ - tensorRT部署yolov8-det 目标检测
明月醉窗台
#深度学习实战例程人工智能c++YOLO目标检测计算机视觉人工智能
C++-tensorRT部署yolov8-det目标检测python环境下如何直接调用推理模型转换并导出:pt->onnx->.engineC++tensorrt部署检测模型不写废话了,直接上具体实现过程+all代码1.Python环境下推理直接命令行推理,巨简单yolodetectpredictmodel=yolov8n.ptsource='https
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【深度学习】大模型GLM-4-9B Chat ,微调与部署(3) TensorRT-LLM、TensorRT量化加速、Triton部署
XD742971636
深度学习机器学习深度学习人工智能
文章目录获取TensorRT-LLM代码:构建docker镜像并安装TensorRT-LLM:运行docker镜像:安装依赖魔改下部分package代码:量化:构建图:全局参数插件配置常用配置参数测试推理是否可以代码推理CLI推理性能测试小结验证是否严重退化使用NVIDIATriton部署在线推理服务器代码弄下来编译镜像启动容器安装依赖量化构建trtengines图Triton模板说明实操发起Tr
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S