- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- 一个开源AI牛马神器 | AiPy,平替Manus,装完直接上手写Python!
Agent加载失败
人工智能python开源算法AI编程
还记得三个月前那个在闲鱼被炒到万元邀请码的Manus吗?现在你点官网,直接提示「所在地区不可用」了它走了,但更香的国产开源项目出现了:AiPy(爱派)。主打一个极致简化的AIAgent理念:别搞什么插件市场、Agent路由,直接给AI一个Python解释器,让它用自然语言写代码干活。听起来狠活?实际体验更狠:•完全本地化,界面傻瓜式操作,支持自然语言生成&执行Python任务;•数据清洗、文档总结
- R语言笔记Day1(排序、筛选以及分类汇总))
养猪场小老板
一、排序1、单变量序列排序2、数据表(矩阵)排序二、筛选三、分类汇总一、排序1、单变量序列排序rank、sort和order函数>aa[1]315#rank用来计算序列中每个元素的秩#这里的“秩”可以理解为该元素在序列中由小到大排列的次序#上面例子给出的序列[3,1,5]中,1最小,5最大,3居中#于是1的秩为1,3的秩为2,5的秩为3,(3,1,5)对应的秩的结果就是(2,1,3)>rank(a
- 从0开始学习R语言--Day58--竞争风险模型
在用传统生存分析方法的场景中(如Kaplan-Meier和Cox回归),假设所有事件都是独立且互斥的,但在现实中,研究对象可能面临多种互斥的终点事件(如癌症患者可能死于癌症本身,也可能死于其他原因),如果直接去分析,模型会把这种结局时间错误地纳入评估,从而提高了病症的分析。而竞争风险模型可以在考虑其他竞争风险存在的情况下,排除干扰求得某特定事件发生的概率。以下是一个例子:library(cmprs
- Python爬虫【五十八章】Python数据清洗与分析全攻略:从Pandas到深度学习的异常检测进阶
程序员_CLUB
Python入门到进阶python爬虫pandas
目录背景与需求分析第一章:结构化数据清洗实战(Pandas核心技法)1.1数据去重策略矩阵1.2智能缺失值处理体系第二章:深度学习异常检测进阶2.1自动编码器异常检测(时序数据)2.2图神经网络异常检测(关系型数据)第三章:综合案例实战案例1:金融交易反欺诈系统案例2:工业传感器异常检测第四章:性能优化与工程实践4.1大数据处理加速技巧4.2模型部署方案第五章:方法论总结与展望5.1方法论框架5.
- Python与机器学习库Scikit-learn进阶
master_chenchengg
pythonpythonPythonpython开发IT
Python与机器学习库Scikit-learn进阶Scikit-learn进阶之旅:从新手到高手的必经之路为什么选择Scikit-learn?安装与环境设置特征工程的艺术:打造更强大的预测模型数据清洗特征构造模型调优秘籍:网格搜索与交叉验证的最佳实践网格搜索交叉验证集成学习的魅力:提升模型性能的组合拳随机森林梯度提升机堆叠实战案例解析:使用Scikit-learn解决真实世界问题数据准备模型训练
- 基于Python的酒店订单数据分析与可视化实战
不若浮生一梦
python作业python数据分析开发语言
本文将通过一个酒店订单数据集,展示如何使用Python进行完整的数据分析流程,包括数据清洗、特征工程、探索性分析、可视化以及业务洞察,适合数据分析初学者或想通过项目提升数据思维的开发者。一、项目背景随着旅游业的迅速发展,酒店运营者越来越依赖数据分析来提升客户体验与优化收益管理。本项目基于某国际连锁酒店集团提供的真实订单数据,包含超过10万条记录,涵盖订单类型、顾客行为、取消情况等多个维度。目标是通
- AI技术落地的综合实战经验报告,结合最新行业案例、代码示例及可视化图表,系统阐述AI在开发提效、算法优化与行业应用中的实践路径。
一、自动化开发革命:从代码生成到低代码架构1.1自然语言转代码(NL2Code)实战技术架构基于GPT-4/Codex的代码生成器实现以下流程:graphTDA[自然语言输入]-->B(GPT-4/Codex解析)B-->C{代码解析器}C-->D[Python/Java/SQL]C-->E[测试用例]D-->F[代码质量检测]F-->G[可执行程序]典型场景:数据清洗函数生成python#输入提
- 【科研绘图系列】R语言绘制边际云雨图散点图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制边际云雨图散点图加载R包library(tidyverse)library(ggplot2)library(ggpubr)library(ggpmisc)library(gghalves)library(aplot
- 代谢组数据分析(二十四):基于tidymass包从质谱原始数据到代谢物注释结果的实践指南
生信学习者1
代谢组数据分析(2025版)数据分析数据挖掘r语言数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据准备原始数据处理导入massDataset数据对象交互图数据探索更新样本表格信息峰分布情况缺失值情况数据清洗数据质量评估去除噪声代谢特征过滤立群样本填补缺失值数据标准化和整合预处理后评估代谢物注释增加MS2图谱到数据对象数据库1注释数据库2注释数据库3注释结果统计分析剔除无注释代谢物追踪数据对象的相
- Python 数据分析实战:洞察 2025 热门行业发展新态势
目录一、案例背景二、代码实现2.1数据收集2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1人工智能技术热点挖掘2.4.2汽车行业市场趋势分析2.4.3能源行业绿色能源发展预测三、主要的代码难点解析3.1数据收集3.2数据清洗-汽车市场数据异常值处理3.3数据分析-人工智能技术热点挖掘3.4数据分析-汽车行业市场趋势分析3.5数据可视化四、可能改进的代码4.1数据收集改进4.2数据清洗改进
- 数据编辑器所具备的数据整理功能
ykjhr_3d
编辑器
在企业的数据处理过程中,数据清洗与整理是至关重要的环节,而数据编辑器在这方面发挥着关键作用。在一份包含客户信息的数据表中,常常会出现缺失值的情况。比如客户的年龄、联系方式等字段可能因为各种原因没有被记录,这就形成了缺失值。数据编辑器提供了多种处理缺失值的方法。对于数值型变量,如客户的消费金额,如果存在缺失值,可以使用均值、中位数等方法进行填补。假设一家电商企业的数据表中,部分客户的某次消费金额缺失
- 学习小组Day4笔记--韧
韧_7e6f
R语言基础R以及Rstudio的下载和安装,操作界面和基本语言的认知。安装之前,确认电脑用户名是英文;如果是中文,请参考当Rstudio杠上中文用户名很不幸,我就是中文名,按照上述说明,我将TEMP和TMP的值均改成D:\Rtemp;而后重启。1.R的下载和安装用搜狗微信搜索:“果子学生信给自己一个全新的R语言环境”https://mirrors.tuna.tsinghua.edu.cn/CRAN
- R语言-数据清洗-缺失值处理
刘大帅1
当对数据库中的芯片进行id转换后有许多NA值,这时候需要将这些数据值删掉。缺失值处理包括两个步骤,即缺失数据的识别和缺失值处理。在R语言总缺失值以NA表示,可以使用函数is.na()判断缺失值是否存在,函数complete.cases()可识别样本数据是否完整从而判断缺失情况。缺失值处理常用方法有删除法、替换法、插补法。(1)删除法:可分为删除观测样本与删除变量。删除观测样本通过na.omit()
- go语言trim的使用
许墨の小蝴蝶
golang
在Go语言中,`strings.Trim`函数用于去除字符串**首尾**指定的字符集。通过该函数,您可以灵活地删除字符串开头和结尾的特定字符,使字符串符合预期的格式。####主要作用1.**数据清洗**:处理用户输入或外部数据时,去除首尾不需要的字符,如空格、标点符号等。2.**字符串格式化**:确保字符串以特定的格式呈现,便于后续处理或展示。####函数签名```gofuncTrim(sstri
- 从0开始学习R语言--Day55--弹性网络
Chef_Chen
r语言
通常来说,样本数据的数据个数会远大于特征数,但是当我们遇到特殊数据,比如基因数据,可能会有成百上千甚至上万地特征量,而样本个数只有几十个,此时如果直接做回归,由于特征数量很多,且有很多特征共线性较高,很容易过拟合,而能处理共线性的方法,又无法将特征的系数压缩为0,这样计算量会大大增加。用弹性网络建模,其与其他不同的是,有两个惩罚项,L1负责控制特征系数(可以为0),做初步的筛选;L2负责剔除相关性
- 从0开始学习R语言-Day56--空间变系数模型
Chef_Chen
学习
对于涉及到空间相关性分析的数据来说,直接对其做杜宾模型的拟合,有时候很难解释有些变量的p值或是否收敛,因为许多变量的联系以及数据特征在拟合的过程中被消化掉了。而用不同的方法和模型去一步步测试特性,不仅可以证明课题或数据有无研究下去的意义,还可以帮我们节省工作量,确定研究的方向。以下是一个例子:#加载包library(sp)library(spgwr)library(ggplot2)library(
- R 语言绘制六种精美热图:转录组数据可视化实践(基于 pheatmap 包)
医工交叉实验工坊
信息可视化r语言开发语言
在转录组Bulk测序数据分析中,热图是展示基因表达模式、样本聚类关系的核心可视化工具。一张高质量的热图不仅能清晰呈现数据特征,更能提升研究成果的展示效果。本文基于R语言的pheatmap包,整理了六种适用于不同场景的热图绘制方法,涵盖基础聚类、分组对比、通路注释等需求,私信即可获取全部代码,方便科研人员快速实现数据可视化。一、绘图前的数据准备热图绘制的核心是基因表达矩阵,数据格式的规范性直接影响后
- 数据分析必备神器:Pandas入门实战指南(零基础也能起飞[特殊字符])
文章目录一、为什么Pandas是数据分析的神器?Pandas的三大超能力:二、5分钟极速上手(附实战代码)三、职场人必学的五个骚操作3.1数据清洗黑科技3.2多文件合并技巧3.3智能分组统计3.4时间序列分析3.5表格颜值改造四、避坑指南(血泪教训)4.1内存爆炸陷阱4.2索引混乱之谜4.3SettingWithCopy幽灵警告五、学习路线图(亲测有效)朋友们!!!今天咱们聊聊Python数据分析
- 用Python爬虫玩转数据可视化(实战向)
文章目录一、先来点有意思的!二、开整!数据抓取部分2.1选个软柿子捏2.2数据提取黑科技三、数据清洗骚操作3.1温度数据大改造3.2风力等级提取四、可视化ShowTime!4.1折线图基础款4.2进阶版热力图4.3动态图表黑科技五、避坑指南(血泪经验)六、还能玩得更花吗?七、完整代码哪里找?八、说点掏心窝的话一、先来点有意思的!你相不相信只需要30行代码,就能把网页上的原始数据变成酷炫的图表?今天
- 【作物模型】R语言与作物模型(以DSSAT模型为例)融合应用
没有梦想的咸鱼185-1037-1663
R语言DSSAT模型生态系统r语言开发语言数据分析
随着基于过程的作物生长模型(Process-basedCropGrowthSimulationModel)的发展,R语言在作物生长模型和数据分析、挖掘和可视化中发挥着越来越重要的作用。想要成为一名优秀的作物模型使用者与科研团队不可或缺的人才,除了掌握对作物模型相关知识之外,还要掌握模型的快速模拟和高效数据分析能力。DecisionSupportSystemsforAgrotechnologyTra
- 新闻聚合推荐App开发实战
兔乱扔
本文还有配套的精品资源,点击获取简介:本项目综合了大数据分析、用户行为追踪和个性化算法,旨在为用户提供个性化的新闻阅读体验。通过JavaScript混合移动开发框架ReactNative或Ionic,可以构建跨平台的新闻聚合推荐App。新闻聚合涉及爬虫技术整合多源新闻内容,并进行数据清洗与格式化。新闻推荐基于机器学习算法分析用户数据,实时更新内容以适应用户变化。本项目还考虑了用户体验和隐私保护,涉
- 数模国赛冲刺 | 数据预处理方法合集(数据清洗、数据变换与数据编码)
Easy数模
深度学习数学建模数据分析
数据预处理方法合集(数据清洗、数据变换与数据编码)数据预处理是数据科学和机器学习项目成功的基础步骤。通过适当的数据预处理,可以确保数据的质量、提升模型的性能,并为后续的建模和分析打下坚实的基础。忽视数据预处理可能导致模型训练失败或性能不佳,甚至得出错误的结论。因此,数据预处理在数据驱动的项目中是不可或缺的步骤,接下来我们将详细地介绍具体的方法,文末可获得全文PDF!目录数据清洗缺失值处理异常值处理
- Pandas入门秘籍:玩转数据分析的瑞士军刀![特殊字符]
MicroTeamers
pandas数据分析数据挖掘
文章目录为什么Pandas这么?(数据工作者的血泪史)数据工作者的三大痛点:核心武器:DataFrame与Series(超级重要!!)Series:一维数据王者DataFrame:二维表格核武器实战五大神技(职场生存必备)✨神技1:数据清洗魔法⚡神技2:条件筛选闪电战神技3:分组统计大杀器神技4:数据变形术神技5:格式通吃王避坑指南(血泪教训!!)新手常踩的三大雷区:性能优化秘籍(处理百万级数据)
- Python与数据分析库Pandas进阶
Python与数据分析库Pandas进阶一、开篇:Pandas的魅力1.1数据分析:不仅仅是数字游戏1.2为什么选择Pandas二、基础篇:掌握Pandas的核心2.1数据结构:Series与DataFrame2.2数据读取与存储2.3数据清洗:让数据更加干净三、进阶篇:Pandas的高级功能3.1数据重塑:让数据更加符合需求3.2数据合并:拼接与连接3.3数据分组与聚合:挖掘数据深层含义四、实战
- 从零开始学 Pandas:数据处理核心操作指南
目录一、数据的导入与导出:数据处理的第一步1.读取不同格式的文件2.数据导出二、数据清洗:让数据更"干净"1.缺失值处理2.重复值处理三、数据抽取与转换:精准获取所需信息1.条件抽取2.字符串截取:slice函数3.数据计算四、数据合并:整合多源信息1.列的合并2.数据框的合并五、高级处理:抽样、标准化与分组1.随机抽样2.数据标准化3.数据分组在数据分析领域,Pandas库无疑是Python生态
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 【2025版】最新大模型就业方向,零基础入门到精通,收藏这篇就够了
程序员_大白
大模型程序员职业与发展大模型人工智能
大模型就业方向主要集中在以下几个核心领域:数据治理方向:涉及爬虫、数据清洗、ETL、DataEngine、Pipeline等工作,确保数据质量和可用性,支持模型训练和运行。平台搭建方向:负责分布式训练、大模型集群以及工程基建,构建高效的模型运行平台,支持高性能计算。模型算法方向:专注于开发新的预训练模型和优化算法,提升模型的准确性和效率,适用于NLP、语音助手、对话机器人等领域。部署落地方向:包括
- R语言的分位数回归实践技术高级应用
梦想的初衷~
R语言生态农业r语言回归
回归是科研中最常见的统计学研究方法之一,在研究变量间关系方面有着极其广泛的应用。由于其基本假设的限制,包括线性回归及广义线性回归在内的各种常见的回归方法都有三个重大缺陷:(1)对于异常值非常敏感,极少量的异常值可能导致结果产生巨大的误差;(2)对数据的分布有着较为苛刻的要求,如果数据不符合指定的分布,结果同样是不可信的;(3)只能估计因变量的条件均值,不能估计自变量对因变量分位点的不同影响。分位数
- 掌握正则表达式:在Python中检测重复词的实战演练
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:正则表达式是IT领域中用于文本处理的强大工具,本示例将介绍如何使用正则表达式检测字符串中的重复词,这在数据清洗、文本分析和日志处理等场景下非常有用。通过Python的re模块,我们将详细介绍检测重复词的步骤,包括字符串的处理、单词频率的统计以及重复词的筛选和输出。同时,解释如何使用不同的正则表达式元字符和修饰符来满足特定需求,例如不区分大小写或处理特殊字符。此
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla