- OnJava8-学习分享(附资源)
李超同学
学习书籍onjava8
本书是布鲁斯•埃克尔时隔15年,继ThinkinginJava之后又一力作,基于Java的3个长期支持版(Java8、11、17),讲解Java核心语法,并对Java的核心变化进行详述。全书内容通俗易懂,配合示例讲解逐步深入,并结合实际开发需要,从语言底层设计出发,有效帮读者规避一些常见的开发陷阱。主体部分共22章,内容包含对象、操作符、控制流、初始化和清理、复用、多态、接口、内部类、集合、函数式
- c# winform 五子棋 人机对战 (详细)
目录1.前言2.人机对战主要功能实现3.其他功能修改4.完整代码1.前言c#winform简单五子棋,支持连续悔棋。-CSDN博客基础版跳链接。建议先阅读。在基础版的界面上增加两个groupBox,并各自放两个radioButton。在基础版上form1.cs中增加变量privateboolisAIThinking=false;//判断是否该ai走privateTimeraiDelayTimer;
- 每日英汉对照(238-10-11)
快乐有你_1ec8
1CanIaskyousomething?我能问你件事吗?2Sure.当然。3DoyouknowyourfriendStuart?是关于你的朋友斯图尔特?4Well,heaskedmeoutagainandIsaidyes,andthenIstartedthinkingmaybeIshouldtalktoyourfirst.他又约我出去了,我答应了,然后我觉得应该先和你谈谈。5Aboutwhat?
- 英语流利说 Level6 Unit1 Part2 Dialogue
咔哧咔哧大橙子
ChangesinLifeWhatareyouthinkingabout?Youlooksopensive.IwasjustthinkingabouthowmuchthingshavechangedsinceIwasachild.Oh,sometimesIthinkaboutthattoo.Whatwereyourthoughts?Nostalgicforsure.GenerallyIrememb
- [论文阅读] 人工智能 + 软件工程 | LLM优化RTL代码:在时序逻辑面前栽了跟头?—— 一项基于变形策略的实证研究
张较瘦_
前沿技术论文阅读人工智能
LLM优化RTL代码:在时序逻辑面前栽了跟头?——一项基于变形策略的实证研究论文标题:RethinkingLLM-BasedRTLCodeOptimizationViaTimingLogicMetamorphosisarXiv:2507.16808[pdf,html,other]RethinkingLLM-BasedRTLCodeOptimizationViaTimingLogicMetamorp
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- 《How to Take Smart Notes》读书笔记1
LY320
最近在读一本书,题为《HowtoTakeSmartNotes:OneSimpleTechniquetoBoostWriting,LearningandThinking–forStudents,AcademicsandNonfictionBookWriters》1。尚未读完,分享一些读这本书的感想,我的一些心得,和不解。这本书让我觉得最有收获的点是更新了我对记录和整理笔记的认识。通常我们在记录笔记时
- MCP与Sequential Thinking:系统问题的分解与解决之道
Echo_Wish
Python进阶python人工智能算法
MCP与SequentialThinking:系统问题的分解与解决之道引言:复杂问题背后的逻辑思维在面对复杂问题时,我们常常感到手足无措,尤其是在需要将任务分解为多个步骤时。这是对个人思维能力的极大挑战,而掌握有效的思维工具则可以让事情事半功倍。今天我们讨论的两个工具:MCP(MutuallyExclusiveCollectivelyExhaustive)和SequentialThinking(顺
- The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能
文章主要内容总结本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:研究背景与问题:当前LRMs(如OpenAIo1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。研究方法:采用可控谜题环境(如汉诺塔、跳
- 系统、架构、结构思维辨析
深海科技服务
IT应用探讨架构大数据服务器linux程序人生
一、什么是系统、架构、结构思维系统式思维、架构式思维和结构化思维都是解决复杂问题的重要思维方式,它们之间既有联系又有区别。1.系统式思维(SystemsThinking)定义:系统式思维是一种宏观的、整体性的思考方式,它关注事物作为一个整体的运作方式,以及其组成部分之间如何相互关联、相互影响。它强调理解事物内部的结构、模式、周期和反馈回路,而不是孤立地看待某个问题或某个部分。核心思想:整体性:看到
- 【AI论文】GLM-4.1V-思考:借助可扩展强化学习实现通用多模态推理
东临碣石82
人工智能
摘要:我们推出GLM-4.1V-Thinking这一视觉语言模型(VLM),该模型旨在推动通用多模态推理的发展。在本报告中,我们分享了在以推理为核心的训练框架开发过程中的关键发现。我们首先通过大规模预训练开发了一个具备显著潜力的高性能视觉基础模型,可以说该模型为最终性能设定了上限。随后,借助课程采样强化学习(ReinforcementLearningwithCurriculumSampling,R
- Cline中配置MCP
Alexon Xu
MCP
1、自动安装MCP默认AI生成的配置会报错:spawnnpxENOENTspawnnpxENOENT,然后排查了npx安装都是OK的,需要使用cmd运行npx,配置如下:{"mcpServers":{"sequentialthinking":{"autoApprove":[],"disabled":false,"timeout":60,"command":"cmd.exe","args":["/c
- 深入理解reeze/tipi项目中的词法分析与语法分析技术
焦习娜Samantha
深入理解reeze/tipi项目中的词法分析与语法分析技术tipiThinkingInPHPInternals,AnopenbookonPHPInternals项目地址:https://gitcode.com/gh_mirrors/ti/tipi引言在编程语言实现领域,词法分析和语法分析是构建编译器或解释器的关键环节。本文将基于reeze/tipi项目中的相关内容,深入浅出地讲解这些核心技术原理。
- Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model 论文阅读
钟屿
论文阅读人工智能深度学习学习图像处理计算机视觉
Diff-Retinex:用生成式扩散模型重新思考低光照图像增强摘要本文中,我们重新思考了低光照图像增强任务,并提出了一种物理可解释的生成式扩散模型,称为Diff-Retinex。我们的目标是整合物理模型和生成网络的优点。此外,我们希望通过生成网络补充甚至推断低光照图像中缺失的信息。因此,Diff-Retinex将低光照图像增强问题表述为Retinex分解和条件图像生成。在Retinex分解中,我
- 【番外】 AI 时代应具备的四大核心能力
成都犀牛
人工智能大模型人工智能机器学习
四大核心能力AI思维、整合力、引导力、判断力另:如果想快速吸收,可以直接下拉到最后看总结1.AI思维(AIThinking)AI思维是人工智能模型在执行任务时所展现的“思考”方式,是其内部决策逻辑和数据处理能力的体现。算法思维(AlgorithmicThinking):解释:指AI理解和执行决策逻辑的能力。这包括理解任务的内在结构,将问题分解为可处理的步骤,并按照预设或学习到的算法进行处理。它关注
- 论文阅读:arxiv 2025 OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
CSPhD-winston-杨帆
论文阅读
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://www.doubao.com/chat/8815924393371650https://arxiv.org/pdf/2506.02397#page=17.09OThink文章目录速览研究背景与问题核心思路与方法实验结果结论与意义速览这篇论文聚焦于
- 论文阅读:arxiv 2025 Not All Tokens Are What You Need In Thinking
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://arxiv.org/pdf/2505.17827https://www.doubao.com/chat/8814790364572162文章目录速览研究背景提出的解决方案:条件token选择(CTS)实验结果核心贡献研究局限总结速览这篇论文主要探
- CppCon 2016 学习:Lightweight Object Persistence With Modern C++
虾球xz
CppCon学习c++开发语言
你给出的这段文字是某个演讲、论文或者技术文档的概要(Overview)部分,内容主要是关于内存分配器(allocator)设计以及**对象持久化(objectpersistence)**的一些思路。让我帮你逐条解析和理解:Overview(概要)•Goals(目标)Describeawayofthinkingaboutallocatordesignthatmaybehelpful描述一种设计内存分
- ✨如何在 vLLM 中取消 Qwen3 的 Thinking 模式
杨靳言先
人工智能pythonchatgpt自然语言处理pytorch
如何在vLLM中取消Qwen3的Thinking模式在使用Qwen3模型与vLLM(VeryLargeLanguageModel)进行推理服务时,你可能会发现模型默认会输出类似“我正在思考……”的提示内容。这种行为被称为Thinking模式。如果你希望跳过这些提示内容,直接返回模型结果,本文将介绍两种实现方式。什么是Thinking模式?Thinking模式是Qwen3在推理时默认输出的一种提示语
- fastadmin发送邮箱提示“SMTP Server did not respond with anything I recognized”
爱吃西红柿!
php
修改vendor/txthinking/mailer/src/Mailer/SMTP.php亲测有效
- 17、Swift框架微调实战(2)-QWQ-32B LORA微调cot数据集
Andy_shenzl
大模型学习SwiftQWQ微调LORA
1、QWQ-32B介绍1.1基本介绍QwQ是Qwen系列的大模型之一,专注于推理能力(reasoning)。相比于传统的指令微调(instruction-tuned)模型,QwQ具备思考与推理(thinkingandreasoning)的能力,因此在各种下游任务(特别是复杂问题)上,能实现显著的性能提升。QwQ-32B是该系列的中等规模推理模型,其性能可媲美当前最先进的推理模型,如DeepSeek
- 大模型现象级发现-2025年上半年 资料收集
CSPhD-winston-杨帆
人工智能
相关资料让QwQ思考模型-不思考的小技巧2025-05-27最新实验:不听人类指令OpenAI模型拒绝自我关闭https://x.com/PalisadeAI/status/1926084635903025621公众号qwen3的致命幻觉!大模型微调会思考的大模型更不听话,我的豆包失控了…WhenThinkingFails:ThePitfallsofReasoningforInstruction-
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 图文检索(1):Rethinking Benchmarks for Cross-modal Image-text Retrieval
简简单单的貔貅
图文检索深度学习计算机视觉
RethinkingBenchmarksforCross-modalImage-textRetrieval摘要1引言2相关工作2.1Image-Textretrieval2.2Image-TextDatasets3方法3.1更新图像候选池3.1.1准备候选图像3.1.2搜索相似的图像3.1.3组装相似的图像集3.2对粗粒度文本进行翻新3.2.1找到粗粒度的文本3.2.2提示生成细节3.2.3合并新
- LeapVAD:通过认知感知和 Dual-Process 思维实现自动驾驶飞跃——论文阅读
一点.点
#自动驾驶人工智能语言模型
《LeapVAD:ALeapinAutonomousDrivingviaCognitivePerceptionandDual-ProcessThinking》2025年1月发表,来自浙江大学、上海AI实验室、慕尼黑工大、同济大学和中科大的论文。尽管自动驾驶技术取得了显著进步,但由于推理能力有限,数据驱动的方法仍然难以应对复杂的场景。与此同时,随着视觉语言模型的普及,知识驱动的自动驾驶系统也得到了长
- NoThinking vs Thinking:推理模型无需思考也能有效
王哥儿聊AI
大模型论文阅读解析人工智能语言模型自然语言处理
摘要:最近的大型语言模型(LLMs)显著提升了推理能力,主要是通过在生成过程中包含一个明确且冗长的“思考”过程来实现的。在本文中,我们质疑这种明确的思考过程是否真的必要。我们使用最先进的DeepSeek-R1-Distill-Qwen模型,发现通过简单的提示绕过思考过程(记作NoThinking)可以出人意料地有效。在控制token数量的情况下,NoThinking在多个具有挑战性的推理数据集上优
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models
绒绒毛毛雨
搜索推荐语言模型人工智能自然语言处理
文章目录摘要1引言2背景:长思维链推理模型与过度思考现象2.1思维链(CoT)推理2.2长CoT推理模型中的过度思考问题3基于模型的高效推理3.1基于长度奖励设计的强化学习(RL)3.2使用可变长度CoT数据的监督微调(SFT)3.2.1构建可变长度CoT推理数据集3.2.2微调方法4基于推理输出的高效推理4.1将推理步骤压缩为更少的潜在表示4.2推理过程中的动态推理范式4.2.1基于显式标准的动
- 进阶篇09self-Ask-大模型
monday_CN
机器学习大数据人工智能
AIAgent技术框架进阶教程:SelfAsk深度解析系列课程进度已完成章节:9章当前更新内容:SelfAsk框架详解即将更新:ThinkingandSacrifici框架解析目录知识回顾SelfAsk框架原理实战代码解析版本迁移指南最佳实践建议常见问题解答1.知识回顾PlanandExecute核心要点需要工具直接处理未完成已完成用户请求任务分解子任务列表执行判断外部API调用内部计算状态更新完
- AI Agent(十一)-Camel基于AI的图像内容识别
AI_Auto
人工智能人工智能AIAgent
AIAgent系列【十一】一.Camel库函数修复二、代码实现一.Camel库函数修复对于camel-ai版本为0.2.22的安装包程序,base_model中函数preprocess_messages,此函数的作用是对消息列表进行预处理,主要目的是在将消息发送到模型API之前,移除消息中的“思考内容”(thinkingcontent),并执行其他模型特定的预处理操作。需要修改的文件地址为:…Li
- TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
不打灰的小刘
dailypapertransformer深度学习人工智能语言模型
基本信息原文链接:https://arxiv.org/abs/2410.23168作者:HaiyangWang,YueFan,MuhammadFerjadNaeem,YongqinXian,JanEricLenssen,LiweiWang,FedericoTombari,BerntSchiele️关键词:ProgressiveScaling,Attentionmechanism分类:机器学习摘要中
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,