- Qwen3 大模型实战:使用 vLLM 部署与函数调用(Function Call)全攻略
曦紫沐
大模型大模型部署Qwen3vLLM函数调用
文章摘要本文将带你从零开始,深入掌握如何使用Qwen3-8B大语言模型,结合vLLM进行高性能部署,并通过函数调用(FunctionCall)实现模型与外部工具的智能联动。我们将详细讲解部署命令、调用方式、代码示例及实际应用场景,帮助你快速构建基于Qwen3的智能应用。一、Qwen3简介与部署环境准备Qwen3是通义千问系列的最新一代大语言模型,具备强大的自然语言理解和生成能力,尤其在函数调用、工
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- ChatGPT还不能写小说吗?
刘若愚
最近,ChatGPT大热,据说可以写论文,编故事,好像无所不能。于是,我给它出了个题目:写一篇5万字的科幻小说。人物:刘若愚,化学家;刘子琪,大律师;仔仔,刘子琪的宠物猫;周金凝,医生;刘泽余,大侦探;赵政淇,程序猿;杰夫(Jeff)机器人它给我的回答是:我很抱歉,我是一个AI语言模型,无法写出如此长篇的小说。但我可以为您提供一些写作灵感和指导:确定故事背景和时间线:在科幻小说中,背景和时间线非常
- 神奇的平静
漫步的小马驹
我们七组色香味俱全的特色菜百家宴我们七组的仙女们仙女们在舞动上图是今晚上海nlp课堂的晚会照片。熟悉的场地,熟悉的伙伴们。只是,我从画面里,跑到了画面外。决定不去二阶的时候,我以为在这样的时刻,我会有很多情绪:郁闷、遗憾、羡慕、纠结……没想到,这一刻真的来临的时候,我心里是满满的喜悦、平静。其实,在读到惠安的时,我内心有些小波动:惠安和我工作类似,她也面临突击检查,她因为领导的理解、同事的护援而得
- AI心理学四层架构揭秘:语言模型为何“说谎“?
TGITCIC
AI-大模型的落地之道语言模型人工智能自然语言处理大模型国产大模型大模型落地
第一章神经层:代码编织的"脑电图"1.1注意力权重的量子跃迁当Claude3.5Haiku处理"达拉斯所在州的首府"这类问题时,其注意力权重图谱呈现出量子跃迁特征。研究团队通过归因图技术捕捉到:在输入"达拉斯"的瞬间,模型内部Texas节点的激活强度达到87.6%,首府概念节点同步飙升至79.3%。这种非线性激活模式与人类大脑的默认模式网络惊人相似。模型层级激活时序决策路径可解释性神经层300ms
- BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习人工智能语言模型自然语言处理机器学习深度学习
https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe80https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe801引言与此担忧一致,研究表明,即使最初校准良好的大型语言模型(LLMs)在RL训练后也会变得过度自信(Lengetal.,2
- Gradient-Adaptive Policy Optimization:Towards Multi-Objective Alignment of Large Language Models
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习
2025.acl-long.549.pdfhttps://aclanthology.org/2025.acl-long.549.pdf1.概述大型语言模型(LLMs)(Anthropic,2023;OpenAI,2024)已经在广泛的实际应用中展示了显著的能力(Bubecketal.,2023),包括内容创作(Yuanetal.,2022)、编程辅助(Chenetal.,2021;Gaoetal.
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- Langchain学习笔记(十):文档加载与处理详解
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。前言在构建基于大语言模型的应用时,文档处理是一个至关重要的环节。无论是构建RAG(检索增强生成)系统,还是进行知识库问答,我们都需要将各种格式的文档转换为模型可以理解和处理的形式。Langchain提供了强大的文档加载和处理功能,支持多种文件格式,并提
- BGE-M3模型结合Milvus向量数据库强强联合实现混合检索
在基于生成式人工智能的应用开发中,通过关键词或语义匹配的方式对用户提问意图进行识别是一个很重要的步骤,因为识别的精准与否会影响后续大语言模型能否检索出合适的内容作为推理的上下文信息(或选择合适的工具)以给出用户最符合预期的回答。在本篇文章中,我将尽可能详细地介绍想达成准确识别用户提问意图的解决方案之一,即基于功能强大的BGE-M3模型和Milvus向量数据库实现混合检索(稠密向量densevect
- day12-逻辑函数(IF、And、Or)
鱼和熊掌兼得
今天想来说说我的学习收获,以下为一些心得和感悟。时间过的很快,目前已经完成了一半的打卡,回头想想,由一开始的觉得很容易呀,到现在觉得有些吃力。短短10几天的时间,我觉得自己的收获很大。越是将课程学习下去,越能体会储君老师说的那句话,越是碎片化时代,越需要系统性学习。因为,在以前我的Excel学习是非常的零散,基本上是需要用的时候,就从网上学习一点,导致我什么都知道皮毛,但是没有系统性的了解。这是第
- 构建高效 RAG 流程的七个关键点及其落地实践
charles666666
搜索引擎大数据需求分析交互笔记数据库
人工智能应用浪潮中,检索增强生成(RAG)技术凭借着结合大型语言模型(LLMs)的生成能力和信息检索系统的独特优势,成为了各企业挖掘数据价值、提升业务智能化水平的关键手段之一。然而,构建一个高效且精准的RAG流程并非易事,其中存在着诸多关键点和挑战。作为一名非资深IT技术顾问,我将基于丰富的实战经验,为大家深入剖析构建高效RAG流程的七个关键点及其落地实践。一、文档解析:混合格式的“第一道坎”在企
- ChatGPT 嵌入 IDE:代码生成、调试一步到位!
大力出奇迹985
chatgptide
当ChatGPT与IDE(集成开发环境)深度融合,开发领域正迎来颠覆性变革。这种结合不仅让代码生成从繁琐的手动编写转变为智能辅助下的高效创作,更将调试过程化繁为简,实现开发全流程的无缝衔接。本文将从开发效率革新、代码质量提升、调试模式重构、学习曲线优化以及未来挑战与机遇五个维度,详细剖析ChatGPT嵌入IDE的具体价值与实践场景,为开发者呈现这一技术融合带来的全新工作模式。在软件开发的历史长河中
- LangChain specific default response
营赢盈英
AIlangchainpythonopenaiapi
题意:LangChain特定的默认响应问题背景:usingLangChainandOpenAI,howcanIhavethemodelreturnaspecificdefaultresponse?forinstance,let'ssayIhavethesestatement/responses使用LangChain和OpenAI时,如何让模型返回特定的默认响应?例如,假设我有如下的陈述/响应:St
- client = OpenAI()超时问题
孤独的邮差
服务器运维
最近学习时候按着书本写发现api有超时现象,左试右试发现是这两行代码出现问题client=OpenAI()response=client.chat.completions.create()于是查资料解决,最后发现client=OpenAI()需要显示传参,全局设置的参量无法直接导入,遂改成显示参数传入OpenAIclient=OpenAI(base_url="https://api.vveai.c
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 使用中转API调用OpenAI大模型的指南
引言近年来,人工智能(AI)技术的飞速发展使得各种大模型(如GPT-4)在自然语言处理领域表现出色。然而,中国用户访问OpenAI的API时经常会遇到网络限制问题。本文将介绍如何通过中转API地址(http://api.wlai.vip)调用OpenAI的大模型,并提供示例代码以供参考。使用中转API调用OpenAI大模型步骤一:安装所需的Python库首先,确保你已安装了openai库。可以通过
- 解决:Python通过OpenAI调用大模型API超时问题
-米兰的小铁匠
pythonlinux开发语言
业务中有时需要Python通过OpenAI调用大模型API进行问答,通过pip命令安装OpenAI:pipinstallopenai-ihttps://pypi.tuna.tsinghua.edu.cn/simple以Qwen2.5-VL-72B-Instruct为例,代码如下:fromopenaiimportOpenAI#初始化OpenAI客户端client=OpenAI(api_key='',
- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- 2025年最新五大顶级大模型技术对比分析报告
it_czz
人工智能
2025年最新五大顶级大模型技术对比分析报告执行摘要本报告基于2025年最新数据,深度分析当前最顶尖的5个已发布大语言模型:KimiK2(月之暗面)、Claude3.5Sonnet、GPT-4o、Gemini2.5Pro、DeepSeekR1,从技术架构、成本效益、性能表现、适配场景等多个维度进行全面对比。核心发现KimiK2:中文优化最强,超长上下文处理能力突出,本土化程度最高Claude3.5
- AI+MCP智能研判系统架构
AI+MCP智能研判系统架构1.系统概述1.1核心理念AI+MCP智能研判系统是一个创新的网络安全分析平台,通过将大语言模型(LLM)的智能理解能力与MCP(ModelContextProtocol)协议的标准化工具调用能力相结合,实现了"自然语言提问→AI智能理解→MCP工具调用→AI深度研判→智能结果输出"的完整闭环。1.2技术创新点智能意图识别:基于LLM的自然语言理解,自动解析用户查询意图
- 优化提示内容生成技术框架:提示工程架构师的坚实后盾
优化提示内容生成技术框架:提示工程架构师的坚实后盾引言背景:大语言模型时代的“提示瓶颈”当GPT-4、Claude3、Gemini等大语言模型(LLM)的参数规模突破万亿、上下文窗口扩展至百万token时,一个矛盾逐渐凸显:模型能力的跃升与提示质量的滞后,正在成为制约AI应用落地的核心瓶颈。2023年斯坦福大学的研究显示,在企业级LLM应用中,70%的功能故障源于提示设计缺陷——或因指令模糊导致输
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- 从0搭建到持续优化:提示工程架构师的评估体系迭代全流程
从0搭建到持续优化:提示工程架构师的评估体系迭代全流程引言:AI时代的关键角色与评估挑战在人工智能技术迅猛发展的今天,提示工程(PromptEngineering)已从一个小众技能演变为决定AI系统成败的核心能力。随着大语言模型(LLM)能力的不断增强,提示工程架构师(PromptEngineeringArchitect)作为一个新兴职业应运而生,成为连接业务需求与AI能力的关键桥梁。为什么提示工
- !LangChain代理决策架构与源码深度剖析(75)
LangChain代理决策架构与源码深度剖析一、LangChain代理决策架构概述1.1代理决策架构的核心组件LangChain代理的决策架构是其智能交互的核心,主要由大语言模型(LLM)、工具集(Tools)、提示模板(PromptTemplate)、规划器(Planner)、执行器(Executor)和反馈机制六大组件构成。这些组件通过协同工作,实现从用户输入解析到最终结果输出的完整决策流程。
- Claude 4深夜爆更:OpenAI都沉默了,这才是AI的天花板!
码字印象
人工智能
“凌晨上线,不打招呼,一上线就是王炸。”2025年5月,一场没有任何预热的更新,Claude4系列在深夜悄悄炸翻了整个AI圈——这不是一次普通的版本升级,而是一次AI军备竞赛的彻底反转!谁能想到,一次更新就让Claude碾压全场?就在大家还沉浸在GPT-4.5的“小步快跑”时,Anthropic直接把Claude4系列一口气拉到:•Claude4.0正式登场•Claude4.1/Opus智力超越G
- Rouge:面向摘要自动评估的召回导向型指标——原理、演进与应用全景
大千AI助手
深度学习人工智能神经网络Rouge文本摘要Summary评估
“以n-gram重叠量化文本生成质量,为摘要评估提供可计算标尺”Rouge(Recall-OrientedUnderstudyforGistingEvaluation)是由南加州大学信息科学研究所(ISI)的Chin-YewLin于2004年提出的自动文本摘要评估指标,其核心思想是通过计算生成文本与参考摘要之间的n-gram重叠率,量化摘要的内容覆盖度与忠实度。作为自然语言处理(NLP)领域最权威
- Crome:因果鲁棒奖励建模框架——破解LLM对齐中的奖励黑客难题
大千AI助手
人工智能#OTHERPython人工智能深度学习神经网络大模型因果推断奖励黑客RewardHacking
Crome(CausalRobustRewardModeling)是由GoogleDeepMind联合麦吉尔大学和魁北克人工智能研究所(MILA)于2025年提出的创新框架,旨在解决大语言模型(LLM)对齐中奖励模型(RM)的奖励黑客(RewardHacking)问题。该框架通过因果数据增强与反事实训练机制,显著提升RM对真实质量属性(如事实性、安全性)的敏感性,同时抑制对虚假属性(如文本长度、格
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》