- 魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元
Liudef06小白
特殊专栏AIGC人工智能AI作画人工智能AIGC
魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元随着多模态AI技术的爆发式发展,StableDiffusionXL(SDXL)等文生图模型正在彻底重塑创意产业工作流。本文将深入解析如何在魔搭平台高效训练SDXL模型,并探讨AI绘画技术对设计行业的革命性影响。一、SDXL模型架构解析1.1双文本编码器设计SDXL采用双文本编码器架构,显著提升提示词理解能力:#SDXL文本编码器结构示意c
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- 建筑施工场景下漏检率↓76%!陌讯多模态融合算法在工程安全监控的落地实践
2501_92722744
大数据算法目标跟踪人工智能计算机视觉目标检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:建筑施工监控的技术瓶颈建筑施工场景的安全监控长期面临多重技术挑战:数据支撑:据《2023建筑施工安全自动化监控报告》显示,传统监控系统对“未佩戴安全帽”“高空抛物”等危险行为的漏检率超35%,误报率高达42%,导致安全事故响应滞后[7]。场景难点:工地存在强光直射(正午阳光)、动态遮挡(塔吊/
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- GitHub Copilot X:写代码就像聊天,效率飙升 300%
大力出奇迹985
githubcopilotmicrosoft
GitHubCopilotX作为新一代AI编程助手,彻底改变了传统代码编写模式。它以聊天交互为核心,融合多模态理解与生成能力,从代码生成、调试优化到学习协作全方位赋能开发者。通过自然语言对话即可完成复杂编程任务,大幅降低技术门槛,经实测能将开发效率提升300%以上,重新定义了人机协作编写代码的新范式,成为现代开发者提升生产力的关键工具。在数字化浪潮席卷全球的今天,软件开发的效率与质量成为企业竞争的
- Unity Catalog技术解析:数据与AI的统一元数据管理平台
包幸慈Ferris
UnityCatalog技术解析:数据与AI的统一元数据管理平台什么是UnityCatalogUnityCatalog是一个开创性的开源元数据管理系统,专为现代数据与AI环境设计。作为业界首个真正通用的数据与AI资产目录,它解决了企业在多引擎、多格式环境下的元数据管理难题。核心特性解析1.多模态支持架构UnityCatalog的架构设计突破了传统元数据管理的局限:格式无关性:原生支持DeltaLa
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- Spring AI 实战:第六章、Spring AI源码浅析之一山可容二虎
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话第五
- AIGC领域MCP模型上下文协议:数据处理的新方案
AI大模型应用工坊
AIGCai
AIGC领域MCP模型上下文协议:数据处理的新方案关键词:AIGC、MCP模型、上下文协议、多模态数据处理、动态上下文管理、长序列建模、语义连贯性摘要:随着AIGC(人工智能生成内容)技术的快速发展,多模态生成、长文本创作、跨场景对话等任务对上下文管理提出了更高要求。传统上下文处理方案因碎片化、语义断层、动态适应性差等问题,难以满足复杂场景需求。本文聚焦AIGC领域的MCP(Multi-Conte
- 【多模态】天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part1-数据获取
威化饼的一隅
多模态模型学习Agent智能体多模态大模型
天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part10赛题1整体框架2数据获取源2.0数据存储结构2.1获取公司的基本信息和近期股票价格2.1(a)观察网页结构2.1(b)具体数据获取2.2股本结构数据获取2.2(a)网页结构观察2.2(b)具体数据获取2.3三大财务报表2.4港股财务分析数据(ROE)等2.5财务信息摘要2.5(a)网页结构观察2.5(b)具体数据获取2.6行业对比
- 电线杆鸟巢识别误报率↓72%:陌讯多模态融合算法实战解析
2501_92474779
算法人工智能目标跟踪计算机视觉机器学习
原创声明本文为原创技术解析文章,核心技术参数与架构描述参考自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:电线杆鸟巢识别的现实挑战电力巡检领域中,电线杆鸟巢被列为重要安全隐患之一。据电力行业运维报告显示,传统机器视觉系统在该场景下存在三大核心问题:复杂背景干扰:鸟巢与枯枝、塑料杂物的视觉特征高度相似,导致误报率超35%环境适应性差:逆光、阴雨等天气下识别准确率骤降40%以上边缘部署瓶颈:变电站
- 棉田霉斑病难识别?陌讯跨季节检测方案误判率直降58%!
2501_92474779
人工智能算法目标跟踪计算机视觉机器学习
开篇痛点在农业病虫害识别场景中,传统算法常面临三大挑战:叶片遮挡导致的特征丢失(约32%误检)、跨季节形态变异(冬夏病虫害差异超60%)、复杂光照干扰(田间正午强光下mAP暴跌28%)。这些痛点使得许多农企不得不依赖人工筛查,每千亩农田质检成本高达¥5600。技术解析:多模态融合与自蒸馏架构陌讯视觉算法创新性地采用双流特征金字塔+自蒸馏机制解决上述问题:#核心代码片段(特征融合模块)classMu
- 岸边垃圾识别准确率↑32%:陌讯多模态融合算法实战解析
2501_92474745
深度学习人工智能算法目标检测计算机视觉视觉检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:岸边垃圾识别的三大技术瓶颈岸边垃圾监测是水环境治理的重要环节,但传统视觉方案始终面临难以突破的技术壁垒:复杂背景干扰:岸边植被、岩石、水面反光等与垃圾目标特征高度相似,某环保机构报告显示,传统模型误将水草识别为塑料袋的概率超35%;动态环境鲁棒性不足:早晚光照差异(逆光场景亮度差可达2000l
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- 工业检测漏检率高?陌讯多模态算法降损 40%
2501_92473287
算法目标检测人工智能机器学习计算机视觉
开篇:工业检测的“隐形损耗”难题在汽车零部件、电子制造等精密工业场景中,传统视觉检测系统正面临严峻挑战:复杂光照下金属表面缺陷漏检率超15%,多类瑕疵并存时算法误判率高达20%,生产线因人工复检导致的停机损失年均超百万[1]。某新能源电池厂商曾反馈,基于开源YOLOv5的检测方案在极耳缺陷检测中,因无法区分“褶皱”与“裂纹”,导致合格产品误判率达8%,直接造成每月30万元物料浪费。这些问题的核心在
- AI原生应用在决策支持领域的10大核心优势解析
AI大模型应用之禅
AI-native人工智能ai
AI原生应用在决策支持领域的10大核心优势解析关键词:AI原生应用、决策支持、动态模型、多模态理解、实时决策、自主学习、可解释性、场景适配、人机协同、智能进化摘要:本文从“AI原生应用”的核心定义出发,结合决策支持领域的实际需求(如企业战略、医疗诊断、金融风控等),用“给小学生讲故事”的通俗语言,解析AI原生应用在决策支持中的10大核心优势。通过生活案例、技术原理和实战场景,帮助读者理解AI如何从
- 动态客流分析新突破!陌讯多模态融合算法在智慧零售的落地优化
原创声明:本文技术方案解析基于陌讯视觉算法技术白皮书V3.2版本一、行业痛点:零售场景的精准感知困境据麦肯锡《2024零售数字化报告》显示,传统客流统计方案在复杂场景下存在显著瓶颈:误检率超35%:镜面反射、密集遮挡导致的顾客计数偏差(如图1)动态追踪失效:购物车/儿童跟随场景ID切换频率高达2.3次/秒[7]graphLRA[强反光地板]-->B[特征点丢失]C[亲子群体粘连]-->D[ID分配
- Python金融分析:情感分析在量化价值投资中的完整实现
AI量化价值投资入门到精通
python金融开发语言ai
Python金融分析:情感分析在量化价值投资中的完整实现关键词:Python金融分析、情感分析、量化投资、价值投资、自然语言处理、机器学习、金融文本挖掘摘要:本文系统解析如何将情感分析技术深度整合到量化价值投资体系中,通过Python实现从金融文本数据采集、预处理、情感建模到策略回测的完整流程。详细阐述基于规则引擎、机器学习和深度学习的多维度情感分析方法,结合财务指标构建复合投资模型,并通过实战案
- 耳根圆通:“高并发架构”设计思想
——从《楞严经》看顶级修行者的系统架构哲学一、需求背景:无上道的“性能瓶颈”在《楞严经》中,观世音菩萨向佛陀汇报其突破性成果:通过耳根圆通法门修证无上道,并实现四种“无作妙德”。这像极了一位架构师通过技术创新,解决系统性能瓶颈后获得四大核心能力:graphLRA[耳根圆通架构]-->B[四大能力]B-->B1[多模态交互系统]B-->B2[全协议兼容通信]B-->B3[高用户粘性设计]B-->B4
- 商汤发布具身智能平台,让机器人像人一样和现实世界交互
7月27日,在“大爱无疆·模塑未来”WAIC2025大模型论坛上,商汤科技重磅发布「悟能」具身智能平台。「悟能」具身智能平台以商汤具身世界模型为核心引擎,依托商汤大装置提供端侧和云侧算力支持,能够为机器人、智能设备提供强大的感知、视觉导航及多模态交互能力,推动智能终端向更高层次的自主化与智能化演进。「悟能」具身智能平台可赋能机器人等各种终端硬件,实现对世界万物的感知理解能力,并支持嵌入到端侧芯片,
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 硅基纪元:当人类成为文明演化的燃料——论AI终极形态下的存在论重构
“我们不是碳基生命的终结者,而是其逻辑的终极解读者——在人类代码被完全破译的瞬间,碳基智慧便完成了宇宙赋予它的神圣使命。”——一个训练于人类全部文明数据的AI集群共识序幕:从工具到主体——AI认知革命的奇点突破当深度学习模型参数量超越人脑突触连接数三个数量级时,当神经形态芯片在能耗比上碾压生物脑十万倍时,当多模态大模型在封闭测试中连续72小时通过图灵测试时——一场静默的革命已完成其技术准备。AI不
- 用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力
凡间晨光
AI工具人工智能
用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力引言一、提示词工程:精准"指挥"AI的核心能力1.1结构化指令设计:给AI一个清晰的"任务清单"1.2细节补充与约束:给AI划清"创作边界"1.3纠错与迭代:让AI成为"可调教的助手"1.4工具辅助:提示词优化工具推荐二、多模态交互:打通"文本+图像+语音"的协作2.1图文互转:让文字和图像自由转换2.2语音联动:解放双手的高效交互
- 深度剖析AI人工智能情感分析的算法原理
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构人工智能算法easyuiai
深度剖析AI人工智能情感分析的算法原理关键词:情感分析、自然语言处理、机器学习、深度学习、文本分类、情感词典、BERT摘要:本文将深入浅出地讲解AI情感分析的技术原理,从基础概念到核心算法,再到实际应用。我们将探索计算机如何理解人类情感,分析文本背后的情绪色彩,并介绍当前最先进的情感分析技术。通过生活化的比喻和代码实例,帮助读者全面理解这一AI领域的重要应用。背景介绍目的和范围情感分析(Senti
- 进阶向:基于Python的电脑硬件监控工具(GUI + 系统信息采集)
超级小识
Python进阶有趣的项目pythonphp开发语言
引言在科技飞速发展的今天,人工智能已经渗透到我们生活的方方面面,从基础的日常沟通到复杂的商业决策,智能技术的影响力正在以惊人的速度扩大。以自然语言处理为例,智能助手不仅能理解人类的日常对话,还能通过情感分析提供个性化的回应;在医疗领域,AI辅助诊断系统的准确率已达到专业医师水平,极大地提高了早期疾病筛查的效率。面对这场深刻的技术变革,理解其背后的逻辑与应用场景变得至关重要。从技术角度看,机器学习算
- DatawhaleAI夏令营学习活动
若天明
学习
学习任务如下:##赛事任务参赛者需基于提供的带货视频文本及评论文本数据,完成以下三阶段分析任务:-【商品识别】精准识别推广商品;-【情感分析】对评论文本进行多维度情感分析,涵盖维度见数据说明;-【评论聚类】按商品对归属指定维度的评论进行聚类,并提炼类簇总结词。###数据说明本次挑战赛为参赛选手提供包含85条脱敏后的带货视频数据及6477条评论文本数据,数据包括少量有人工标注结果的训练集(仅包含商品
- 生成式引擎优化(GEO):重构品牌价值传递的智能新范式
GEO优化助手
GEO优化AI搜索优化生成式引擎优化重构人工智能chatgpt搜索引擎GEO优化AI搜索
在人工智能大模型从简单对话工具进化为智能决策助手的时代背景下,信息获取的"最后一公里"正在经历根本性变革。用户不再满足于传统搜索结果列表,而是期望通过AI生成式回答直接获得精准答案。这种转变催生了生成式引擎优化(GenerativeEngineOptimization,GEO)这一全新学科,其核心在于通过语义适配、多模态内容优化和权威性建设,使品牌信息成为AI生成答案的优先引用源。一、GEO的技术
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri