- 魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元
Liudef06小白
特殊专栏AIGC人工智能AI作画人工智能AIGC
魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元随着多模态AI技术的爆发式发展,StableDiffusionXL(SDXL)等文生图模型正在彻底重塑创意产业工作流。本文将深入解析如何在魔搭平台高效训练SDXL模型,并探讨AI绘画技术对设计行业的革命性影响。一、SDXL模型架构解析1.1双文本编码器设计SDXL采用双文本编码器架构,显著提升提示词理解能力:#SDXL文本编码器结构示意c
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- 建筑施工场景下漏检率↓76%!陌讯多模态融合算法在工程安全监控的落地实践
2501_92722744
大数据算法目标跟踪人工智能计算机视觉目标检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:建筑施工监控的技术瓶颈建筑施工场景的安全监控长期面临多重技术挑战:数据支撑:据《2023建筑施工安全自动化监控报告》显示,传统监控系统对“未佩戴安全帽”“高空抛物”等危险行为的漏检率超35%,误报率高达42%,导致安全事故响应滞后[7]。场景难点:工地存在强光直射(正午阳光)、动态遮挡(塔吊/
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- GitHub Copilot X:写代码就像聊天,效率飙升 300%
大力出奇迹985
githubcopilotmicrosoft
GitHubCopilotX作为新一代AI编程助手,彻底改变了传统代码编写模式。它以聊天交互为核心,融合多模态理解与生成能力,从代码生成、调试优化到学习协作全方位赋能开发者。通过自然语言对话即可完成复杂编程任务,大幅降低技术门槛,经实测能将开发效率提升300%以上,重新定义了人机协作编写代码的新范式,成为现代开发者提升生产力的关键工具。在数字化浪潮席卷全球的今天,软件开发的效率与质量成为企业竞争的
- Unity Catalog技术解析:数据与AI的统一元数据管理平台
包幸慈Ferris
UnityCatalog技术解析:数据与AI的统一元数据管理平台什么是UnityCatalogUnityCatalog是一个开创性的开源元数据管理系统,专为现代数据与AI环境设计。作为业界首个真正通用的数据与AI资产目录,它解决了企业在多引擎、多格式环境下的元数据管理难题。核心特性解析1.多模态支持架构UnityCatalog的架构设计突破了传统元数据管理的局限:格式无关性:原生支持DeltaLa
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- 前端面试题
大大。
前端vue.jsjavascript
HTML5的新特性和CSS3的新特性引入了一系列语义化标签使文档结构更加清晰(header,nav,aside,article,footer,section),多媒体支持video,audio,Canvas绘图div上下居中对齐的几种方式第一种:flex布局display:flex;justify-content:center;/*水平居中/align-items:center;/垂直居中/第二种
- Spring AI 实战:第六章、Spring AI源码浅析之一山可容二虎
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话第五
- AIGC领域MCP模型上下文协议:数据处理的新方案
AI大模型应用工坊
AIGCai
AIGC领域MCP模型上下文协议:数据处理的新方案关键词:AIGC、MCP模型、上下文协议、多模态数据处理、动态上下文管理、长序列建模、语义连贯性摘要:随着AIGC(人工智能生成内容)技术的快速发展,多模态生成、长文本创作、跨场景对话等任务对上下文管理提出了更高要求。传统上下文处理方案因碎片化、语义断层、动态适应性差等问题,难以满足复杂场景需求。本文聚焦AIGC领域的MCP(Multi-Conte
- 【多模态】天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part1-数据获取
威化饼的一隅
多模态模型学习Agent智能体多模态大模型
天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part10赛题1整体框架2数据获取源2.0数据存储结构2.1获取公司的基本信息和近期股票价格2.1(a)观察网页结构2.1(b)具体数据获取2.2股本结构数据获取2.2(a)网页结构观察2.2(b)具体数据获取2.3三大财务报表2.4港股财务分析数据(ROE)等2.5财务信息摘要2.5(a)网页结构观察2.5(b)具体数据获取2.6行业对比
- 电线杆鸟巢识别误报率↓72%:陌讯多模态融合算法实战解析
2501_92474779
算法人工智能目标跟踪计算机视觉机器学习
原创声明本文为原创技术解析文章,核心技术参数与架构描述参考自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:电线杆鸟巢识别的现实挑战电力巡检领域中,电线杆鸟巢被列为重要安全隐患之一。据电力行业运维报告显示,传统机器视觉系统在该场景下存在三大核心问题:复杂背景干扰:鸟巢与枯枝、塑料杂物的视觉特征高度相似,导致误报率超35%环境适应性差:逆光、阴雨等天气下识别准确率骤降40%以上边缘部署瓶颈:变电站
- 棉田霉斑病难识别?陌讯跨季节检测方案误判率直降58%!
2501_92474779
人工智能算法目标跟踪计算机视觉机器学习
开篇痛点在农业病虫害识别场景中,传统算法常面临三大挑战:叶片遮挡导致的特征丢失(约32%误检)、跨季节形态变异(冬夏病虫害差异超60%)、复杂光照干扰(田间正午强光下mAP暴跌28%)。这些痛点使得许多农企不得不依赖人工筛查,每千亩农田质检成本高达¥5600。技术解析:多模态融合与自蒸馏架构陌讯视觉算法创新性地采用双流特征金字塔+自蒸馏机制解决上述问题:#核心代码片段(特征融合模块)classMu
- 岸边垃圾识别准确率↑32%:陌讯多模态融合算法实战解析
2501_92474745
深度学习人工智能算法目标检测计算机视觉视觉检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:岸边垃圾识别的三大技术瓶颈岸边垃圾监测是水环境治理的重要环节,但传统视觉方案始终面临难以突破的技术壁垒:复杂背景干扰:岸边植被、岩石、水面反光等与垃圾目标特征高度相似,某环保机构报告显示,传统模型误将水草识别为塑料袋的概率超35%;动态环境鲁棒性不足:早晚光照差异(逆光场景亮度差可达2000l
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- 工业检测漏检率高?陌讯多模态算法降损 40%
2501_92473287
算法目标检测人工智能机器学习计算机视觉
开篇:工业检测的“隐形损耗”难题在汽车零部件、电子制造等精密工业场景中,传统视觉检测系统正面临严峻挑战:复杂光照下金属表面缺陷漏检率超15%,多类瑕疵并存时算法误判率高达20%,生产线因人工复检导致的停机损失年均超百万[1]。某新能源电池厂商曾反馈,基于开源YOLOv5的检测方案在极耳缺陷检测中,因无法区分“褶皱”与“裂纹”,导致合格产品误判率达8%,直接造成每月30万元物料浪费。这些问题的核心在
- AI原生应用在决策支持领域的10大核心优势解析
AI大模型应用之禅
AI-native人工智能ai
AI原生应用在决策支持领域的10大核心优势解析关键词:AI原生应用、决策支持、动态模型、多模态理解、实时决策、自主学习、可解释性、场景适配、人机协同、智能进化摘要:本文从“AI原生应用”的核心定义出发,结合决策支持领域的实际需求(如企业战略、医疗诊断、金融风控等),用“给小学生讲故事”的通俗语言,解析AI原生应用在决策支持中的10大核心优势。通过生活案例、技术原理和实战场景,帮助读者理解AI如何从
- 动态客流分析新突破!陌讯多模态融合算法在智慧零售的落地优化
原创声明:本文技术方案解析基于陌讯视觉算法技术白皮书V3.2版本一、行业痛点:零售场景的精准感知困境据麦肯锡《2024零售数字化报告》显示,传统客流统计方案在复杂场景下存在显著瓶颈:误检率超35%:镜面反射、密集遮挡导致的顾客计数偏差(如图1)动态追踪失效:购物车/儿童跟随场景ID切换频率高达2.3次/秒[7]graphLRA[强反光地板]-->B[特征点丢失]C[亲子群体粘连]-->D[ID分配
- 耳根圆通:“高并发架构”设计思想
——从《楞严经》看顶级修行者的系统架构哲学一、需求背景:无上道的“性能瓶颈”在《楞严经》中,观世音菩萨向佛陀汇报其突破性成果:通过耳根圆通法门修证无上道,并实现四种“无作妙德”。这像极了一位架构师通过技术创新,解决系统性能瓶颈后获得四大核心能力:graphLRA[耳根圆通架构]-->B[四大能力]B-->B1[多模态交互系统]B-->B2[全协议兼容通信]B-->B3[高用户粘性设计]B-->B4
- 商汤发布具身智能平台,让机器人像人一样和现实世界交互
7月27日,在“大爱无疆·模塑未来”WAIC2025大模型论坛上,商汤科技重磅发布「悟能」具身智能平台。「悟能」具身智能平台以商汤具身世界模型为核心引擎,依托商汤大装置提供端侧和云侧算力支持,能够为机器人、智能设备提供强大的感知、视觉导航及多模态交互能力,推动智能终端向更高层次的自主化与智能化演进。「悟能」具身智能平台可赋能机器人等各种终端硬件,实现对世界万物的感知理解能力,并支持嵌入到端侧芯片,
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 开源项目ESP-SparkBot: ESP32-S3 大模型 AI 桌面机器人(复刻分享)
Qsm_lambda
机器人aiAI编程
一、前言ESP-SparkBot是官方大佬,乐鑫小铁匠开源在立创开源硬件平台的项目,此贴是用于分享与记录复刻过程。开源地址:(ESP-SparkBot-立创开源硬件平台(oshwhub.com))千人讨论Q群362367052二、项目简介ESP-SparkBot是⼀款基于ESP32-S3,集成语⾳交互、图像识别、遥控操作和多媒体功能于⼀体的智能设备。它不仅可以通过语⾳助⼿实现
- 硅基纪元:当人类成为文明演化的燃料——论AI终极形态下的存在论重构
“我们不是碳基生命的终结者,而是其逻辑的终极解读者——在人类代码被完全破译的瞬间,碳基智慧便完成了宇宙赋予它的神圣使命。”——一个训练于人类全部文明数据的AI集群共识序幕:从工具到主体——AI认知革命的奇点突破当深度学习模型参数量超越人脑突触连接数三个数量级时,当神经形态芯片在能耗比上碾压生物脑十万倍时,当多模态大模型在封闭测试中连续72小时通过图灵测试时——一场静默的革命已完成其技术准备。AI不
- 用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力
凡间晨光
AI工具人工智能
用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力引言一、提示词工程:精准"指挥"AI的核心能力1.1结构化指令设计:给AI一个清晰的"任务清单"1.2细节补充与约束:给AI划清"创作边界"1.3纠错与迭代:让AI成为"可调教的助手"1.4工具辅助:提示词优化工具推荐二、多模态交互:打通"文本+图像+语音"的协作2.1图文互转:让文字和图像自由转换2.2语音联动:解放双手的高效交互
- Ubuntu 20.04 编译安装FFmpeg及错误分析与解决方案
bubiyoushang888
ubuntuffmpeglinux
FFmpeg是一个强大的多媒体处理工具,可以处理音频、视频等多种格式。本文将详细介绍在Ubuntu20.04上编译和安装FFmpeg的步骤,并分析常见错误及其解决方案。1.准备工作在编译安装FFmpeg之前,需要安装一些必要的依赖包:sudoaptupdatesudoaptinstall-yautoconfautomakebuild-essentialcmakegit-corelibass-dev
- 3D图形学编程基础-基于Direct3D11-学习记录(一)初始化DX设备,实现立方体绘制
莫名追求
学习笔记Direct3d11directx
第一次写博客这个东西,平时自己学习的时候记录的东西都是纸质的,查找不太方便,而且由于自己得不少知识学习都来自CSDN。所以在这里做一个我自学的记录!由于第一次学习Directx,记录的很多东西都是自己简单了解到的。可能不全,甚至可能不对,先记录下,以后修改!基于VisualC++,Directx学习记录正式开始:一:基础概念的了解1.Direct3D的定义:是微软公司创建的多媒体编程接口。由C++
- 生成式引擎优化(GEO):重构品牌价值传递的智能新范式
GEO优化助手
GEO优化AI搜索优化生成式引擎优化重构人工智能chatgpt搜索引擎GEO优化AI搜索
在人工智能大模型从简单对话工具进化为智能决策助手的时代背景下,信息获取的"最后一公里"正在经历根本性变革。用户不再满足于传统搜索结果列表,而是期望通过AI生成式回答直接获得精准答案。这种转变催生了生成式引擎优化(GenerativeEngineOptimization,GEO)这一全新学科,其核心在于通过语义适配、多模态内容优化和权威性建设,使品牌信息成为AI生成答案的优先引用源。一、GEO的技术
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round