- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 初探数学思维(一):数学概括
JackyFuu
数学培养规则意识;培养周密思维和创新能力“现代电子计算机之父”冯·诺依曼对微积分的评价:微积分是现代数学的第一个成就,而且怎样评价它的重要性都不为过。我认为,微积分比其他任何事物都更清楚地表明了现代数学的发端;而且,作为其逻辑发展的数学分析体系仍然构成了精密思维中最伟大的技术进展。《GEB-一条永恒的金带》,普利策奖,1979,美国,指出有一条永恒的金带把数理逻辑、绘画、音乐等不同领域之间的共同规
- 基于鲸鱼算法的三相逆变器分数阶滑模控制参数优化
神经网络15044
仿真模型MATLAB专栏python算法语音识别人工智能数学建模生成对抗网络学习
基于鲸鱼算法的三相逆变器分数阶滑模控制参数优化前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言三相逆变器在新能源发电、电机驱动等领域有着广泛应用,其控制性能直接影响整个系统的电能质量和运行效率。分数阶滑模控制结合了分数阶微积分和滑模控制的优点,能够提供更好的动态性能和鲁棒性。然而,分数阶控制器的阶次选择对系统性能有重要影响,传
- 每天五分钟深度学习:数学中常见函数中的导数
每天五分钟玩转人工智能
每天五分钟玩转深度学习算法深度学习人工智能导数机器学习
本文重点导数是微积分学中的一个核心概念,它描述了函数在某一点附近的变化率。在物理学、工程学、经济学等众多领域中,导数都发挥着极其重要的作用。本文旨在详细介绍数学中常见函数的导数,以期为读者提供一个全面而深入的理解。数学中常见的导数常数函数的导数对于常数函数f(x)=C(C为常数),其导数为f'(x)=0。这是因为常数函数在任何点的切线斜率都是0,即函数值不随x的变化而变化。多项式函数的导数多项式函
- 无人机中的数学应用-第二章:航线规划:数学驱动的路径优化
无人装备硬件开发爱好者
无人机无人机数学应用无人机航迹规划飞行路径数学应用
目录引言:数学如何为航线规划“导航”1.路径规划数学发展的历史脉络:从图论到智能算法1.1启蒙阶段(17-19世纪):几何与微积分的奠基1.2现代理论奠基期(20世纪上半叶):算法思想的突破1.3算法爆发期(20世纪末):从Dijkstra到A*的飞跃1.4智能优化时代(21世纪至今):从单一算法到融合模型2.路径搜索算法的基本原理:从“盲目搜索”到“智能导航”2.1改进A*算法:无人机路径规划的
- 《机器学习数学基础》补充资料:什么是随机变量
CS创新实验室
机器学习数学基础机器学习人工智能数学概率
卓永鸿提供本文介绍什么是随机变量及为什么要发展此种概念。我们先来看这个问题:一个边长为aaa的正三角形,CCC为其外接圆,外接圆半径为RRR。若在圆内随机作一弦,则弦长lll大于aaa的概率为何?法1:随机半径法先拉出一条圆半径,然后随机在半径上取一点,再画出通过此点并垂直半径的弦。易知当弦心距小于R/2R/2R/2时,弦长lll大于aaa,故概率为1/21/21/2。法2:随机端点法在圆周上随机
- 实数系的基本定理_11、实数的连续性(1)
weixin_39953102
实数系的基本定理
实数的连续性定理,图片来自网络。实数集合的连续性(简称实数的连续性或者实数的稠密性、实数的完备性)是实数系的一个基本特征,它是微积分学的坚实的理论基础.人们从不同的角度来描述和刻画实数集的完备性,得到了一连串的有关实数的连续性定理,其中包括:确界存在定理,闭区间套定理,单调有界收敛定理,聚点定理,有限覆盖定理,柯西准则,致密性定理等.定理1.1(确界存在定理,简称“确”)有上界数集必有上确界,有下
- 导数:微积分的核心概念与实用解析
你一身傲骨怎能输
数学分析导数
文章摘要导数是描述函数瞬时变化率的数学工具,定义为极限值(f’(a)=limh→0f(a+h)−f(a)h)\lim_{h\to0}\frac{f(a+h)-f(a)}{h})limh→0hf(a+h)−f(a)),若存在则称函数在点a可导。其几何意义是函数图像在点(a,f(a))处切线的斜率。导数计算的是函数值增量与自变量增量比值的极限,反映瞬时变化率。例如,(f(x)=x^2)的导数为(f’
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- 【AI中的数学-人工智能的数学基石】数学:构建AI大厦的基石
云博士的AI课堂
AI中的数学人工智能AI数学AI中的数学AI数学大模型
第一章人工智能的数学基石第四节数学:构建AI大厦的基石数学是人工智能(AI)的核心基石,贯穿于AI算法的设计、模型的构建以及系统的优化过程中。正如建筑大厦需要坚实的地基,AI的发展依赖于深厚的数学理论和方法。理解和掌握这些数学原理,不仅能够提升对AI技术的理解,还能为创新和解决复杂问题提供强有力的工具。本节将系统性地探讨支撑AI的主要数学领域,包括线性代数、微积分、概率与统计、优化理论以及离散数学
- 数学中的泛函分析与算子理论
AI天才研究院
计算AI大模型应用入门实战与进阶ChatGPT实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1数学的发展与泛函分析的产生数学作为一门科学,自古以来就在不断地发展和演变。从最初的算术、几何,到后来的微积分、线性代数,再到现代的拓扑学、概率论等,数学的研究领域不断扩展。泛函分析作为一门现代数学的分支,起源于20世纪初,它主要研究无限维空间中的函数和算子,为许多现代科学和工程问题提供了理论基础。1.2泛函分析与算子理论的关系泛函分析与算子理论密切相关。泛函分析主要研究无限维空间
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- AI大模型从0到1记录学习 大模型技术之数学基础 day26
Gsen2819
算法人工智能大模型人工智能学习算法机器学习目标检测深度学习
高等数学导数导数的概念导数(derivative)是微积分中的一个概念。函数在某一点的导数是指这个函数在这一点附近的变化率(即函数在这一点的切线斜率)。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函数输出值的增量∆y与自变量增量∆x的比值在∆x趋于0时的极限如果存在,即为f在x_0处的导数,记作f’(x_0)、df/dx(x_0)或〖df/d
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- (十七)深度学习之线性代数:核心概念与应用解析
只有左边一个小酒窝
深度学习深度学习线性代数人工智能
1线性代数在深度学习中的定位1.1深度学习的数学基础支柱线性代数是深度学习的核心数学工具之一,与微积分、概率论共同构成深度学习的理论基础。深度学习本质上是对高维数据的处理与建模,而线性代数提供了描述和操作高维空间中数据与变换的语言和方法。1.2从数据表示到模型运算的桥梁数据结构化表示:深度学习处理的图像、文本、音频等数据,通常被转化为向量、矩阵或张量(多维数组)。例如:图像:RGB图像可表示为三维
- 【大模型学习路线首发】 AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!
AI大模型-大飞
人工智能学习程序员大模型学习AI大模型大模型大模型教程
1.打好基础:数学与编程数学基础线性代数:理解矩阵、向量、特征值、特征向量等概念。推荐课程:KhanAcademy的线性代数课程、MIT的线性代数公开课。微积分:掌握导数、积分、多变量微积分等基础知识。推荐课程:KhanAcademy的微积分课程、MIT的微积分公开课。概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。推荐课程:KhanAcademy的概率与统计课程、Coursera的“Pro
- 《三生原理》与非标准分析?
葫三生
三生学派算法人工智能机器学习量子计算数学建模
AI辅助创作:非标准分析(NonstandardAnalysis)是由美国数学家亚伯拉罕·鲁滨逊(AbrahamRobinson)于1960年创立的数学分支,旨在通过严格定义“无穷小量”和“无穷大量”重构分析学基础。其核心思想是将实数域ℝ扩展为包含无穷小(infinitesimal)和无穷大(infinite)元素的超实数域ℝ,从而绕过传统极限理论(ε-δ语言),直接以无穷小运算刻画微积分、拓扑等
- 人工智能学习进阶之路
lumutong
人工智能学习
以下是人工智能学习路径的详细规划,分5个阶段循序渐进,建议学习周期1.5-2年:一、筑基阶段(3-6个月)数学基础线性代数:矩阵运算(推荐《LinearAlgebraDoneRight》)微积分:偏导数/梯度(MIT18.01课程)概率统计:贝叶斯定理(可汗学院概率课)编程基础Python语法(《PythonCrashCourse》)数据处理库:NumPy/Pandas(官方文档+Kaggle练习
- 我2025上岸大模型就靠它了,冲击大厂大模型岗位!大模型学习路线(2025最新)从零基础入门到精通_大模型学习路线
大模型老炮
学习人工智能程序员Agent大模型教学知识库大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。\1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcad
- 大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够
AGI大模型学习
学习人工智能大模型大模型学习AI程序员大模型教程
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 神仙级大模型教程分享,不用感谢,请叫我活雷锋!大模型 学习路线非常详细_大模型学习路线(2025最新)
程序员辣条
学习人工智能大模型产品经理智能体大模型教程AI大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- AI大模型学习路线全攻略,赶紧收藏!
AI大模型-大飞
人工智能学习语言模型程序员大模型AI大模型大模型学习
1.打好基础:数学与编程数学基础线性代数:理解矩阵、向量、特征值、特征向量等概念。推荐课程:KhanAcademy的线性代数课程、MIT的线性代数公开课。微积分:掌握导数、积分、多变量微积分等基础知识。推荐课程:KhanAcademy的微积分课程、MIT的微积分公开课。概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。推荐课程:KhanAcademy的概率与统计课程、Coursera的“Pro
- MATLAB简介(附电子书学习资料)
hweiyu00
分享matlab开发语言
MATLAB简介MATLAB(MatrixLaboratory)是由MathWorks公司开发的一款高性能数值计算和可视化编程语言及交互式环境,广泛应用于工程、科学、金融等领域。电子书资料:https://pan.quark.cn/s/02f3324bc7f3主要功能数值计算矩阵和向量运算线性代数、微积分、微分方程求解统计分析和优化算法数据可视化2D/3D绘图(曲线、曲面、散点图等)动态可视化(动
- 学习大模型路线图:从菜鸟到造物主的通关秘籍
天学林总
DeepSeek学AI人工智能
大家好!今天我们要解锁一个神秘代码——大模型AI自学路线图。这不是枯燥的课程表,而是通往“数字造物主”的藏宝图!从零基础到训出你的第一个AI,只需五步,全程高能,即刻出发!第一关:筑基期——数学与代码的“扎马步”目标:用30天打造AI思维的基础骨骼核心装备:-数学三件套:-线性代数:矩阵是AI的乐高积木(重点:矩阵乘法、特征值)-概率统计:让AI学会“赌概率”(贝叶斯定理、正态分布)-微积分:反向
- 深入详解人工智能入门数学基础:理解向量、矩阵及导数的概念
猿享天开
人工智能数学基础专讲人工智能矩阵线性代数数学
人工智能入门数学基础详解数学是人工智能的基石,理解数学基础对于掌握机器学习和深度学习算法至关重要。本篇文章将详细探讨线性代数和微积分中的基础概念,涵盖向量、矩阵及其运算,以及导数的基本概念。第一部分:线性代数中的向量1.向量的定义与表示向量是线性代数的核心概念之一。它不仅仅是一个数值的集合,而是一个具有大小和方向的数学对象。在多维空间中,向量可以用于表示点的位置、速度、力等物理量。1.1向量的表示
- 【动手学深度学习】2.1. 数据操作
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录2.预备知识2.1.数据操作1)入门2)运算符3)广播机制(broadcastingmechanism)4)索引和切片5)节省内存6)转换为其他Python对象7)小结2.预备知识学习深度学习需掌握以下基础:数据处理:涵盖存储、操作与预处理,核心技能为高效管理表格数据(样本为行,属性为列)。线性代数:矩阵运算是处理多维数据的基础,重点理解基本原理与实现,如矩阵乘法与操作。优化与微积分:通过调整
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s