- 数据分析概念和总结
小小少年Boy
参考:什么是数据分析?总结:决策=数据+分析数据分析的框架:明确分析目标、数据收集、数据清理、数据分析、数据报告、执行与反馈数据分析与数据挖掘,前者偏向于业务分析,后者偏向于数据库算法,借助数据来指导决策数据分析的框架1.首先是数据分析的目的性极强区别于数据挖掘的找关联、分类、聚类,数据分析更倾向于解决现实中的问题。我想解决什么问题?通过这次的分析能让我产生什么决策?比如是否在某个高校举办一场活动
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 2023-02-09
克鲁兹王莲
R代码可以如下:```#定义数据a<-c(1,2,3,4,5)b<-c(2,3,4,5,6)c<-c(3,4,5,6,7)d<-c(4,5,6,7,8)#计算数据之间的相关系数cor_coef<-cor(cbind(a,b,c,d))#聚类以及排序hc<-hclust(as.dist(cor_coef))#绘制聚类树plot(hc)#根据聚类树,获取排序后的结果groups<-cutree(hc,
- DatawhaleAI夏令营学习活动
若天明
学习
学习任务如下:##赛事任务参赛者需基于提供的带货视频文本及评论文本数据,完成以下三阶段分析任务:-【商品识别】精准识别推广商品;-【情感分析】对评论文本进行多维度情感分析,涵盖维度见数据说明;-【评论聚类】按商品对归属指定维度的评论进行聚类,并提炼类簇总结词。###数据说明本次挑战赛为参赛选手提供包含85条脱敏后的带货视频数据及6477条评论文本数据,数据包括少量有人工标注结果的训练集(仅包含商品
- R 语言绘制六种精美热图:转录组数据可视化实践(基于 pheatmap 包)
医工交叉实验工坊
信息可视化r语言开发语言
在转录组Bulk测序数据分析中,热图是展示基因表达模式、样本聚类关系的核心可视化工具。一张高质量的热图不仅能清晰呈现数据特征,更能提升研究成果的展示效果。本文基于R语言的pheatmap包,整理了六种适用于不同场景的热图绘制方法,涵盖基础聚类、分组对比、通路注释等需求,私信即可获取全部代码,方便科研人员快速实现数据可视化。一、绘图前的数据准备热图绘制的核心是基因表达矩阵,数据格式的规范性直接影响后
- 寻找圆柱缺陷
迅卓科技
C++PCL点云处理实战专栏c++开发语言PCL点云
该程序通过圆柱拟合、差异检测、聚类分割和三维尺寸计算,实现了对工业零件表面缺陷的自动化检测与量化分析,并输出可视化结果和详细尺寸报告。效果图1.圆柱拟合模块1.1核心功能实现点云数据的圆柱拟合,包括以下关键操作:最小二乘法拟合:通过特征值分解计算圆柱轴线方向RANSAC拟合:使用法线估计和采样一致性算法精修圆柱参数坐标变换:将圆柱轴线旋转至与Z轴平行圆柱可视化:根据参数生成圆柱表面点云1.2工作流
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- C++实战:数据标准化高效实现
DBSCAN基本DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,适用于发现任意形状的簇并识别噪声点。核心参数包括:eps:邻域半径,决定样本的邻域范围。min_samples:核心点所需的最小邻域样本数。Python实现步骤安装依赖库pipinstallnumpymatplotlibscikit-l
- Scikitlearn:Python机器学习库
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-Scikit-learn:Python机器学习库1.背景介绍1.1什么是Scikit-learnScikit-learn是一个基于Python语言的开源机器学习库。它建立在NumPy、SciPy和matplotlib等优秀的科学计算库之上,为用户提供了一系列高效的数据挖掘和数据分析工具,涵盖了分类、回归、聚类、降维、模型选择和预处理等机器学习的各个方面。Scikit-learn的目标是提供一个高
- 论文:SOLO: Segmenting Objects by Locations
小仙女呀灬
图像分割计算机视觉机器学习人工智能
作者摘要我们提出了一种新的、非常简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“先检测后分割”策略(例如,MaskR-CNN),要么先预测嵌入向量,然后使用聚类技术将像素分组到单个实例中。我们通过引入“实例类别”的概念,从全新的角度看待实例分割的任务,它根据实例的位置和大小为实例中的每个像素分配类别,从而
- 肯尼亚M-Pesa手机数据实时路况洞察报告
百态老人
智能手机
目录第一部分内容深度解析第二部分深化思考与核心问题2.1商业价值十问十答2.2技术核心十问十答第三部分四维商业化策略3.1政策维度3.2商业维度3.3技术维度3.4实例说明附录Python代码示例参考文献第一部分内容深度解析肯尼亚M-Pesa平台利用其庞大的移动用户信令、位置与支付数据,通过匿名化与聚类算法,将手机作为“众包传感器”,实时推断道路拥堵状态并生成城市级路况。该方案以零硬件成本替代传统
- BSCAN 在糖尿病患者数据聚类分析中的应用
wh_xia_jun
AI+医疗机器学习支持向量机人工智能
完整代码:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportDBSCANfromsklearn.preprocessingimportStandardScalerfromsklearn.datasetsimportmake_blobs#设置随机种子,确保结果可复现np.random.seed(42)#1.生成模拟
- 新能源汽车大数据画像:从零到一实现K-means用户分群
新能源汽车研发&测试入门指南
学习笔记新星杯+王者杯汽车大数据kmeans
基于大数据分析的新能源汽车画像研究全攻略:从原理到实战前言在"软件定义汽车"的时代浪潮下,新能源汽车正经历着从交通工具向智能移动终端的进化。本文将带你深入探索如何通过大数据技术构建精准的用户与产品画像,揭秘车企数字化转型的核心技术。全文涵盖完整的技术链路和实战案例,助你快速掌握这一前沿领域。关键词:新能源汽车;用户画像挖掘;大数据分析;K-means聚类目录一、大数据分析技术基石二、新能源汽车画像
- 高斯混合模型(GMM)中的协方差矩阵类型与聚类形状关系详解
码字的字节
机器学习机器学习人工智能高斯混合模型GMM
高斯混合模型(GMM)简介高斯混合模型(GaussianMixtureModel,GMM)是概率统计与机器学习交叉领域的重要模型,其核心思想是通过多个高斯分布的线性组合来描述复杂数据分布。与单一高斯分布不同,GMM能够捕捉数据中的多模态特性,这使得它在处理真实世界非均匀分布数据时展现出独特优势。从数学形式上看,一个包含K个分量的GMM可表示为:其中(\pi_k)是第k个高斯分量的混合系数(满足(\
- 利用 Python 爬取小红书热门笔记并进行标签关键词分析
程序员威哥
最新爬虫实战项目python笔记开发语言
一、背景与目标小红书(RED)作为中国最活跃的内容社区之一,拥有大量关于美妆、穿搭、美食、旅游等领域的用户生成内容(UGC)。对于产品、品牌方或研究人员来说,提取热门笔记的标签关键词,可以有效捕捉用户关注点、消费趋势及内容热词。本项目目标:使用Python爬取小红书某个话题下的热门笔记;分析每篇笔记中的标题、正文、标签等字段;利用NLP技术提取高频关键词;对关键词进行可视化与聚类分析。二、技术难点
- python学习打卡:DAY 18 推断聚类后簇的类型
西西西仓鼠
python训练营python学习聚类
@浙大疏锦行聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。在聚类分析中,推断簇的类型是理解数据内在结构和业务意义的关键步骤。以下是系统化的推断方法及常见簇类型的总结:一、簇的基本类型明显分离的簇特征:不同簇中任意两
- 第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
格图素书
大数据竞赛赛题解析数学建模
目录5.3.3问题三的总结5.4问题四的模型建立与求解5.4.1问题分析5.4.2计算方位角和航向角5.4.3计算距离D和水平速度5.4.4分析并建立模型5.4.4.1聚类分析方法的提出5.4.4.2模型的建立5.4.5问题四的总结5.5问题五的模型建立与求解5.5.1问题五的分析5.5.2传统的战争评估模型5.5.2.1正规作战模型5.5.2.2游击作战模型5.5.2.3混合作战模型5.5.3信
- day 28打卡
weixin_39908253
AI学习笔记python
day18选用昨天的kmeans得到的效果进行聚类,进而推断每个簇的实际含义#先运行之前处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')plt.rcParams['font.sans-se
- 【图像分割】基于模糊聚类FCM和改进的模糊聚类算法实现CT图像分割matlab代码
天天Matlab科研工作室
图像处理Matlab各类代码算法聚类matlab
1简介医学影像分割的基本目标是将图像分割成不同的解剖组织,从而可以从背景中提取出感兴趣区域。因为图像的低分辨率和弱对比度,实现医学影像分割是一件具有挑战的任务。而且,这个任务由于噪声和伪阴影变得更加困难,这些干扰项可能是因器材限制、重建算法和患者移动等原因造成的。目前还没有通用的医学图像分割算法,算法的优点和缺点经常根据所研究的问题而变化。将分割概念具体到颅内出血CT图像上,就是将颅腔中的出血病灶
- Python day18
赵英英俊
Python训练python
@浙大疏锦行pythonday18.内容:昨天学习了聚类算法的一些基本内容,今天继续学习相关知识分析簇的特征和相关含义(使用可视化来进行分析,也可以使用ai)代码:shap.initjs()#初始化SHAP解释器explainer=shap.TreeExplainer(model)shap_values=explainer.shap_values(x1)#这个计算耗时shap_values.sha
- 【AI论文】CLiFT:面向计算高效与自适应神经渲染的压缩光场标记
摘要:本文提出了一种神经渲染方法,该方法将场景表示为“压缩光场标记(CLiFTs)”,以保留场景丰富的外观和几何信息。CLiFT通过压缩标记实现计算高效的渲染,同时能够通过调整标记数量来表征场景,或利用单个训练好的网络渲染新视角。具体而言,给定一组图像,多视图编码器会根据相机位姿对图像进行标记化处理。潜在空间K均值聚类算法利用这些标记选取一组精简的光线作为聚类中心。随后,多视图“压缩器”将所有标记
- Instagram千号矩阵:亚矩阵云手机破解设备指纹检测的终极方案
云云321
矩阵智能手机线性代数
在Instagram的全球化运营中,构建千号矩阵已成为品牌扩大曝光、精准触达用户的核心策略。然而,平台对设备指纹的强监管——通过硬件参数聚类、传感器动态性检测、IP地理一致性校验等200余个维度构建风控模型,使得传统多账号运营面临高封号率、低存活率的双重挑战。亚矩阵云手机通过动态设备指纹重置、智能行为仿真与独立IP池管理三大技术模块,为Instagram千号矩阵提供了安全、高效、低成本的解决方案。
- 学习笔记(39):结合生活案例,介绍 10 种常见模型
宁儿数据安全
#机器学习学习笔记生活
学习笔记(39):结合生活案例,介绍10种常见模型线性回归只是机器学习的“冰山一角”!根据不同的任务场景(分类、回归、聚类等),还有许多强大的模型可以选择。下面我用最通俗易懂的语言,结合生活案例,介绍10种常见模型及其适用场景:一、回归模型(预测连续值,如房价)1.决策树(DecisionTree)原理:像玩“20个问题”游戏,通过一系列判断(如“面积是否>100㎡?”“房龄是否0.5就判为“会”
- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- 【2025CVPR】SEC-Prompt:少样本增量学习中的语义互补提示模型详解
清风AI
生成对抗网络人工智能神经网络pcm目标跟踪深度学习计算机视觉
目录一、研究背景:少样本增量学习的挑战二、SEC-Prompt核心原理1.自适应层次化查询(AdaptiveHierarchicalQuery)2.语义互补提示机制(1)判别性提示(D-Prompt)(2)非判别性提示(ND-Prompt)3.训练策略创新(1)判别性提示聚类损失(2)ND-Prompt数据增强三、模型架构图解四、关键创新点五、实验结果对比1.ImageNet-R结果2.CUB20
- Python 爬虫实战:GitHub 热门项目分析(Star 趋势 + 技术栈聚类)
Python核芯
Python爬虫实战项目python爬虫github
前言今天我们要一起完成一个实战项目:通过爬取GitHub热门项目,分析它们的Star趋势以及技术栈聚类。这个项目不仅能让我们熟悉GitHubAPI的使用,还能锻炼我们数据处理和可视化的能力。GitHub作为全球最大的代码托管平台,拥有海量的开源项目。通过分析这些项目的Star趋势和技术栈,我们可以了解当前热门的技术方向,这对我们的技术选型和职业发展都有很大的帮助。本文将分为以下几个部分:爬取Git
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不