- loam的scanRegistration.cpp文件学习
上一篇博客解析了imuhandler和AccumulateIMUShift()函数,知道了imu预积分。本篇文章就一块看看,点云生成以及点云特征是如何提取的。一、首先看订阅点云函数voidlaserCloudHandler(constsensor_msgs::PointCloud2ConstPtr&laserCloudMsg)。先看代码了//接收点云数据,velodyne雷达坐标系安装为x轴向前,
- ROS:三维激光点云转二维激光pointcloud-to-laserscan
Xian-HHappy
机器人-Robot机器人laserscanros三维激光点云转二维激光
环境ubuntu20.04ros-noetic一、安装库sudoapt-getinstallros-noetic-pointcloud-to-laserscan二、构建ros-package#创建并初始化工作空间mkdir-p~/catkin_ws/srccd~/catkin_ws/src#创建ROS包catkin_create_pkgmy_pointcloud2laserroscpprospys
- 使用MATLAB进行点云的圆形点定
EvktJava
matlab开发语言点云
MATLAB是一种功能强大的数值计算和科学编程工具,可以用于处理和分析各种数据类型,包括点云数据。在这篇文章中,我们将使用MATLAB来实现点云上的圆形点定。圆形点定是指在给定的点云数据中找到最佳拟合的圆形形状。首先,我们需要准备一个点云数据集。我们可以使用MATLAB的PointCloud对象来表示点云数据。假设我们有一个名为"pointCloud"的PointCloud对象,其中包含了一些二维
- 德国大陆毫米波雷达(ARS548)ROS驱动更改
沮丧的迈克尔
Device计算机视觉自动驾驶人工智能opencv深度学习
文章目录前言Detecion前言ARS548的原始ROS驱动提供detection、object两种类型信息,这些信息均是自定义msg,不能直接通过topic发布sensor_msgs::PointCloud2和sensor_msgs::PointCloud信息。下面讲介绍detection。Deteciondetection是提供的点云信息,而object是提供雷达检测到的具体物体信息。下面是d
- 三维点云格式转换
YU2YU4
python
txt转pcdimportopen3daso3dimportnumpyasnp#读取文件data=np.loadtxt(r"../test.txt")data[:,3:6]=data[:,3:6]/255#颜色需要/255才能正确显示#开始转换pcd=o3d.geometry.PointCloud()#创建一个实例变量pcd.points=o3d.utility.Vector3dVector(da
- 海康立体相机3DMVS软件使用不同工作模式介绍
余弦的倒数
学习笔记数码相机3d
文章目录1.SensorCalibration(传感器标定模式)2.Depth(深度模式)3.RGB-D(彩色深度融合模式)4.Depalletizing(拆垛模式)5.Debug(调试模式)6.PointCloud(点云模式)7.Profile(轮廓模式)模式对比与选型建议在3DMVS中切换模式的步骤注意事项在海康威视3DMVS软件中,针对不同的3D视觉应用场景,相机支持多种图像拍摄模式(或称为
- PCL 投影点云
AICVer
PCLPCL
投影到XOY平面上#include#include#include#include#include#include#includeusingnamespacestd;usingnamespacepcl;voidvisualize(PointCloud::Ptrsource,PointCloud::Ptrtarget){visualization::PCLVisualizerviewer("Poin
- VScode与PCL联合编程
JobDocLS
vscodeide编辑器
main.cpp#include#include#include#includeintmain(intargc,charconst*argv[]){pcl::PointCloud::Ptrcloud(newpcl::PointCloud);//加载pcd文件到cloudpcl::io::loadPCDFile("/home/lgc/桌面/c++/pcl/pcl_logo.pcd",*cloud);
- python 深度图生成点云(方法二)
自动驾驶探索站
Python点云高级算法操作教程python深度图生成点云
深度图生成点云一、介绍1.1概念1.2思路1.3函数讲解二、代码示例三、结果示例接上篇:深度图生成点云(方法1)一、介绍1.1概念 深度图生成点云:根据深度图像(depthimage)和相机内参(cameraintrinsics)生成点云(PointCloud)。1.2思路点云坐标的计算公式如下: z=d/depth_scale x=(u-cx)*z/fx y=(v-cy)*z/fy其中,
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 点云边缘提取及可视化
Alan Lan
PCL
点云素材:bunny.txt#include#include#includevoidCreateCloudFromTxt(conststd::string&file_path,pcl::PointCloud::Ptrcloud){std::ifstreamfin(file_path.c_str());std::stringline;pcl::PointXYZpoint;while(getline(
- C++ 实现 ROS 2 点云欧几里得聚类
c++
C++实现ROS2点云欧几里得聚类在LivoxMid-360采集的sensor_msgs::msg::PointCloud2点云数据上进行欧几里得聚类(EuclideanClusterExtraction),具体流程如下:✅1.订阅PointCloud2并转换为pcl::PointCloud解释:sensor_msgs::msg::PointCloud2是ROS2点云消息格式,PCL不能直接处理。
- PointNet++改进策略 :模块改进 | x-Conv | PointCNN, 结合局部结构与全局排列提升模型性能
我是瓦力
PointNet++改进策略人工智能深度学习计算机视觉
目录前言PointCNN实现细节1.XXX-Conv操作输入输出步骤2.PointCNN网络架构层级卷积分类与分割任务3.数据增强4.效率优化前言这篇论文介绍了一种名为PointCNN的方法,旨在从点云(pointcloud)数据中学习特征。传统卷积神经网络(CNN)在处理规则网格数据(如图像)时非常有效,但由于点云是无序且不规则的,直接在其上应用卷积操作会导致形状信息丢失,并对点的排列顺序敏感。
- 点云网络的论文理解(三)-点云网络的优化 PointNet++的总体说明
CUHK-SZ-relu
PointNet深度学习
总体说明这个部分是为了让大家可以更好地理解文章1.以前的网络有什么缺点1.首先第一点就是论文当中反复提到的没有局部特征的问题。2.另外一个就是PointNet不具有平移不变性,理解一下这个,PointNet最后是一个maxpooling所以决定是不是选择当前内容的唯一因素是大小,因为除了pooling之外使用的就只有mlp,之前的所有一系列处理其实都可以等价为乘上一个参数,每个的参数可能不同,有正
- Velodyne16线激光雷达点云数据中的线束(ring)是如何分布的
壹十壹
激光雷达编辑器
将sensor_msgs::PointCloud2转为pcl::PointCloud后的点云数据线束(ring)是从下往上进行递增排序。在下图中线束0为深蓝色,线束1是红色,线束2为淡蓝色,线束3为橘黄色,线束4为绿色,线束6为黄色。(一帧激光雷达点云的强度值在RVIZ中显示的颜色与该帧点云数据中激光雷达强度值的最大值有关)
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- PointNet、PointNet++ 基于深度学习的3D点云分类和分割
一颗小树x
人工智能感知算法自动驾驶深度学习机器学习3D点云PointNet
前言PointNet是直接对点云进行处理的,它对输入点云中的每一个点,学习其对应的空间编码,之后再利用所有点的特征得到一个全局的点云特征。Pointnet提取的全局特征能够很好地完成分类任务,但局部特征提取能力较差,这使得它很难对复杂场景进行分析。PointNet++核心是提出了多层次特征提取结构,有效提取局部特征提取,和全局特征。目录一、PointNet1.1PointNet思路流程1.2Poi
- 计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
紫雾凌寒
AI炼金厂#深度学习#计算机视觉深度学习计算机视觉3dcnnPointNet++3d云3d云数据
一、引言在当今数字化与智能化快速发展的时代,3D点云处理技术在多个前沿领域中发挥着重要作用。特别是在自动驾驶和机器人视觉等领域,这项技术已成为实现智能化的关键支撑。以自动驾驶为例,车辆需要实时感知周围复杂的环境信息,包括行人、车辆、交通标志和路况等。3D点云数据能够提供高精度的三维空间信息,使自动驾驶车辆更准确地识别和定位周围物体,从而做出安全、合理的行驶决策。在城市街道上,自动驾驶车辆通过3D点
- Pointnet++改进即插即用系列:全网首发ACConv2d|即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch点云pointnet++
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ACConv2d,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍由于在给定的应用环境中设计合适的卷积神经网络(CNN)架构通常需要大量的人工工作或大量的GPU时间,研究社区正在
- rosbag提取图片和点云文件
对方正在输入%……
ubuntulinuxpython
目录1、提取点云文件(1)准备工作(2)查看topic(3)提取点云2、提取图片文件(1)准备工作(2)查看topic(3)提取图片1、提取点云文件(1)准备工作打开终端1,启动rosroscore(2)查看topic打开终端2,查询rosbag中的topicrosbaginfo查询结果如下图topic后的信息为录制时的topic,我们现在要提取点云文件,所以需要使用/pointcloud(3)提
- pcl::transformPointCloud()用法及注意事项
NOAHCHAN1987
PCLc++PCL
函数用法#includepcl::transformPointCloud(constpcl::PointCloud&cloud_in,pcl::PointCloud&cloud_out,constEigen::Matrix4f&transform)其中cloud_in,cloud_out的类型为pcl::PointCloud::Ptr或pcl::PointCloud::Ptr等点云类型。trans
- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- PointNet++改进策略 :模块改进 | PointCAT, 使用交叉注意力机制来提升3D点云任务中提升模型精度
我是瓦力
PointNet++改进策略3d深度学习人工智能计算机视觉transformer
论文题目:PointCAT:Cross-AttentionTransformerforPointCloud通讯地址:南京理工大学代码地址:https://github.com/xincheng-yang/PointCAT.PointCAT架构:PointCAT提出了一种基于交叉注意力机制的Transformer网络,专门用于点云表示。它通过两个不同的多尺度特征分支,利用交叉注意力机制来交换信息。通
- PCL 点云视窗类CloudViewer
LeonDL168
PCL算法计算机视觉人工智能视觉检测图像处理
点云视窗类CloudViewer是简单显示点云的可视化工具类,可以让用户用尽可能少的代码查看点云。注意:点云视窗类不能应用于多线程应用程序中。简单点云可视化如果用户想用几行代码可视化程序中所对应的地物,可以使用下面的代码:#include//...voidfoo(){pcl::PointCloud::Ptrcloud;//...为cloud添加对应的场景pcl::visualization::Cl
- Livox_Mid360+IMU仿真搭建
夜雨拾年
无人机
前言本文是对在gazebo里搭建一个livoxmid360+惯导仿真平台测试FAST-LIO2的实现,此博文中存在部分需要修改代码的地方,因此在本文中做出更详细的说明。资源包安装注:由于livox点云的格式是CustomMsg,而rviz中主要使用PointCloud和PointCloud2,转换不太方便,因此不使用官方提供的软件包,使用他人修改后的软件包。但此软件包开发时间较早,缺少mid360
- Pointnet++改进即插即用系列:全网首发DilatedReparamBlock |即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入DilatedReparamBlock,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍近年来,大核卷积神经网络(ConvNets)得到了广泛的研究关注,但有两个尚未解决的关键问
- matlab计算对比两个点云的高程差
不勤劳的码字员
matlab点云数据处理matlab点云距离高程差
通常需要计算两个点云的高程差值代码如下假设pointCloud1和pointCloud2是两个点云数据的矩阵%每行代表一个点,列分别是x,y,z坐标%对齐点云[tform,~,pointCloud1Reg]=pcregistericp(pointCloud1,pointCloud2);%计算重叠区域%假设通过一定的距离阈值来提取重叠区域distanceThreshold=0.1;%可以根据需要调整
- iss关键点检测以及SAC-IA粗配准
jjm2002
点云配准C++算法c++关键点提取点云配准
一、iss关键点检测C++#include#include#include#include#include#include#include#include#includeusingnamespacestd;intmain(int,char**argv){pcl::PointCloud::Ptrcloud(newpcl::PointCloud);//要配准变化的点云pcl::PointCloud::
- c++下使用Open3D进行DBSCAN聚类
Patient patient.
聚类c++DBSCANOpen3d
c++下使用Open3D进行DBSCAN聚类#include#include#includeusingnamespaceopen3d;usingnamespacestd;intmain(intargc,char*argv[]){//读取点云std::shared_ptrcloud(newgeometry::PointCloud);open3d::io::ReadPointCloud("C:/Use
- PCL点云——点云基本知识(一)
钟某某人
算法c++3d
文章目录@[TOC](文章目录)一、点云输入/输出(I/O)1.1点云文件格式1.1.1PCD1.1.2LSA1.1.3PLY1.2序列化与反序列化1.2.1反序列化1.2.2序列化二、点云及其可视化2.1概述2.2PCL-Demo2.3PCL-数据结构PointCloud2.3.1基本类型PointCloud2.3.2衍生类型2.4PCL-常见处理2.4.1可视化Visualization2.4
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比