- 大模型(LLM)推理框架汇总
AIGC大模型 吱屋猪
langchain人工智能AI-native百度产品经理神经网络自然语言处理
MLCLLMsubmodulesinMLCLLM大模型(LLM)好性能通用部署方案,陈天奇(tvm发起者)团队开发.项目链接docs:https://llm.mlc.ai/docs/github:https://github.com/mlc-ai/mlc-llm支持的平台和硬件platforms&hardware支持的模型|Architecture|PrebuiltModelVariants||—
- 【TVM 教程】如何处理 TVM 报错
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/运行TVM时,可能会遇到如下报错:---------------------------------------------------------------AnerroroccurredduringtheexecutionofTVM.F
- 使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南
周情津Raymond
使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南tvm-cnTVMDocumentationinChineseSimplified/TVM中文文档项目地址:https://gitcode.com/gh_mirrors/tv/tvm-cn前言在深度学习模型部署领域,TVM作为一个高效的深度学习编译器栈,能够将训练好的模型优化并部署到各种硬件平台上。本文将详细介绍如何使用T
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- 【TVM 教程】在 TVM 中使用 Bring Your Own Datatypes
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:GusSmith,AndrewLiu本教程将展示如何利用BringYourOwnDatatypes框架在TVM中使用自定义数据类型。注意,BringYourOwnDatatypes框架目前仅处理数据类型的软件模拟版本。该框架不支持开箱
- 【TVM 教程】如何使用 TVM Pass Instrument
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:Chi-WeiWang随着实现的Pass越来越多,instrumentpass执行、分析每个Pass效果和观察各种事件也愈发重要。可以通过向tvm.transform.PassContext提供tvm.ir.instrument.Pa
- TVM Monthly - June 2021
HanBlogs
TVM深度学习推理引擎TVMTVMMonthly
TVMMonthly-June2021AsdiscussedbytheTVMPMC,ourgoalistoprovideamonthlysummaryoftheprojectsousersanddeveloperscangetabetterunderstandingofthegoings-onoftheTVMcommunity.Feedbackandsuggestionsarewelcomedso
- TVM Monthly - July 2021
HanBlogs
TVM深度学习推理引擎TVMTVMMonthly
TVMMonthly-July2021AsdiscussedbytheTVMPPMC,ourgoalistoprovideamonthlysummaryoftheprojectsousersanddeveloperscangetabetterunderstandingofthegoingsonoftheTVMcommunity.Feedbackandsuggestionsarewelcomedso
- 【TVM 教程】如何使用 TVM Pass Infra
HyperAI超神经
TVM人工智能深度学习机器学习TVM调用调用pass在线教程
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZhiChen随着Relay/tir中优化Pass数的增加,手动执行并维护它们的依赖关系变得难以处理。因此我们引入了一个基础架构来管理优化Pass,并使其适用于TVM堆栈中IR的不同层。Relay/tir程序的优化可以在各种粒度上应用
- 【TVM 教程】如何使用 TVM Pass Instrument
HyperAI超神经
TVM语言模型人工智能机器学习TVM编译框架加速芯片深度学习
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:Chi-WeiWang随着实现的Pass越来越多,instrumentpass执行、分析每个Pass效果和观察各种事件也愈发重要。可以通过向tvm.transform.PassContext提供tvm.ir.instrument.Pa
- 深度学习编译器
1)深度学习编译器复杂个JB与通用自动编译工具不同,深度学习编译器结构更加复杂,包括图层优化、张量(Tensor)优化、代码生成、硬件部署、自动调优(AutoTuning)等几个部分。以TVM为例,图1.1为TVM的结构示意图。最上层表示不同的深度学习框架,TVM将不同深度学习框架实现的算法转化为高层IR表示,高层IR以算子为原子单元,将不同类型的算法抽象成图节点对图进行融合优化。之后,TVM将高
- TensorRT × TVM 联合优化实战:多架构异构平台的统一推理加速与性能调优全流程
观熵
大模型高阶优化技术专题架构人工智能
TensorRT×TVM联合优化实战:多架构异构平台的统一推理加速与性能调优全流程关键词TensorRT、TVM、异构推理优化、跨平台部署、GPU加速、NPU融合、自动调度、深度学习推理引擎、性能调优摘要在深度学习模型推理部署场景中,面对GPU、NPU、CPU等多架构异构平台的并存,如何实现统一的高性能推理优化成为企业工程落地的关键挑战。本文聚焦TensorRT与TVM的联合优化策略,从平台结构适
- AI 编译器技术沙龙丨 AMD/北京大学/沐曦/上海创智齐聚北京,TVM/Triton/TileLang 各展所长
hyperai
在AI变革千行百业的时代,一场关于效率、可部署性与算力可持续性的技术革命正悄然发生。作为承上启下的关键中间件,AI编译器串联起了底层硬件与上层应用。无论是已在业界广泛应用的TVM,还是近年来快速崛起的Triton,亦或是今年年初才崭露头角的算子编程语言TileLang,编译技术已不仅仅是让模型「跑得起来」的基本保障,同时也正在升级为支撑「高效执行与资源利用优化」的关键技术。围绕AI编译器上下游的创
- 【TVM 教程】如何使用 TVM Pass Infra
机器学习人工智能深度学习算法
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZhiChen随着Relay/tir中优化Pass数的增加,手动执行并维护它们的依赖关系变得难以处理。因此我们引入了一个基础架构来管理优化Pass,并使其适用于TVM堆栈中IR的不同层。Relay/tir程序的优化可以在各种粒度上应用
- AFC自动售检票系统终端业务软件综合测试方案
Ray_1997
长沙地铁自动售检票系统可用性测试负载均衡程序人生交通物流经验分享
1.测试目标验证终端业务软件是否满足功能需求和性能指标。确保系统在复杂运营环境下的稳定性和可靠性。检测潜在安全漏洞,保证交易数据的安全性。提供系统的全面质量评估,支持系统上线或升级决策。2.测试范围终端类型:闸机(ES)自动售票机(TVM)客服终端(SLE)充值机(AVM)关键功能模块:刷卡验证(进站/出站/换乘)票务操作(售票、退票、充值)数据传输(设备→SC→ACC)日志记录与上传系统接口:硬
- 【TVM 教程】开发环境中加入 microTVM
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MohamadKatanbaf本教程描述了将使用microTVM编译的模型集成到自定义开发环境所需的步骤。在本教程中,我们使用STM32CubeIDE作为目标集成开发环境(IDE),但我们不依赖于此IDE的任何特定功能,将microT
- 【TVM 教程】创建使用 microTVM 的 MLPerfTiny 提交
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MehrdadHessar本教程展示了如何使用microTVM构建MLPerfTiny提交。该教程演示了从MLPerfTiny基准模型中导入一个TFLite模型,使用TVM进行编译,并生成一个可以刷写到支持Zephyr的板上的Zeph
- 【TVM 教程】使用 TVMC Micro 执行微模型
人工智能深度学习
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MehrdadHessar本教程介绍了如何为微型设备编译一个微模型,并在Zephyr平台上构建一个程序,来执行这个模型,烧录程序,并用tvmcmicro命令来执行所有模型。在进行本教程之前你需要安装python和Zephyr依赖安装m
- 【 TVM 教程】microTVM PyTorch 教程
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MehrdadHessar该教程展示了如何使用PyTorch模型进行microTVM主机驱动的AOT编译。此教程可以在使用C运行时(CRT)的x86CPU上执行。注意:此教程仅在使用CRT的x86CPU上运行,不支持在Zephyr上运
- AI编译器对比:TVM vs MLIR vs Triton在大模型部署中的工程选择
学术猿之吻
人工智能mlir量子计算pytorch深度学习分布式
引言:大模型部署的编译器博弈随着千亿参数大模型成为常态,推理延迟优化成为系统工程的核心挑战。本文基于NVIDIAA100与GoogleTPUv4平台,通过BERT-base(110M)和GPT-2(1.5B)的实测数据,对比TVM、MLIR、Triton三大编译框架在动态shape支持、算子融合效率、内存管理等方面的工程特性,揭示不同场景下的编译策略选择规律。一、技术架构对比分析1.1TVM:分层
- PrimExpr 与 RelayExpr 的区别
胡乱儿起个名
TVMTVM编译器AI编译器人工智能
PrimExpr与RelayExpr的区别解析 在TVM的表达式系统中,PrimExpr和RelayExpr是两种不同层级的表达式类型,分别服务于TVM的不同编译阶段和目标场景。以下是它们的核心区别和关联:1.设计目标与层级特性PrimExprRelayExpr所属层级TVM底层张量表达式(TIR层)Relay前端高级计算图主要用途循环优化、硬件指令生成神经网络计算图表示抽象级别低层级(接近硬件
- TVM虚拟机
虚拟机编程语言软件开发
技术核心优势:TVM引擎支持Lisp、JavaScript、Python、Ruby、Lua、Pascal、Basic等多种语法。TVM超微型内核引擎(不足500kb),拥有几百个实用函数。内核模块非常紧凑,所需系统资源很小,因此与其他语言相比加载执行起来更加快速。TVM建立在通用的UNIX系统的C语言库函数基础上,可以运行在各种操作系统平台,如Windows,Linux,BSDs,MacOS等。T
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 【TVM 教程】使用元组输入(Tuple Inputs)进行计算和归约
编译器编程后端人工智能深度学习
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZihengJiang若要在单个循环中计算具有相同shape的多个输出,或执行多个值的归约,例如argmax。这些问题可以通过元组输入来解决。本教程介绍了TVM中元组输入的用法。from__future__importabsolut
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- 【TVM教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在if__name__=="__main__":代码块中。impor
- TVM:设计与架构
Adenialzz
tvm模型部署架构react.js前端
TVM:设计与架构本文档适用于想要了解TVM架构和/或积极开发项目的开发人员。页面组织如下:示例编译流程概述了TVM将模型的高层描述转换为可部署模块所采取的步骤。要开始使用,请先阅读本节。逻辑架构组件部分描述了逻辑组件。后面的部分是针对每个逻辑组件的特定指南,按组件的名称组织。设备/目标交互描述了TVM如何与每种支持的物理设备和代码生成目标进行交互。请查看开发人员操作指南以获取有用的开发技巧。本指
- TVM Compiler中文教程:TVM调度原语(Schedule Primitives)
Mars_WH
TVM深度学习编译器TVM中文教程调度Schedulesplittile
文章目录TVM调度原语(SchedulePrimitives)分裂split平铺tile融合fuse重排序reorder绑定bind从哪里开始计算compute_at计算内联compute_inlinecompute_root总结TVM调度原语(SchedulePrimitives)TVM是用于高效内核代码构建的版本领域专用语言(Domain-Specialed-Language,DSL)。这篇教
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- Ubuntu交叉编译 arm板子上的TVM
陈有爱
TVMubuntu人工智能
目录X86Ubuntu的TVM安装LLVM下载tvm配置config.cmake编译源码python安装测试是否安装成功可以在安装一些库,用于RPCTracker和auto-tuning交叉编译801arm的TVM交叉编译链下载配置config.cmake编译源码编译的时候可能会遇到错误ONNX模型转换为TVM模型创建pre.py,将onnx模型编译成tvm.so文件测试TVM模型修改demo程序
- 设计模式介绍
tntxia
设计模式
设计模式来源于土木工程师 克里斯托弗 亚历山大(http://en.wikipedia.org/wiki/Christopher_Alexander)的早期作品。他经常发表一些作品,内容是总结他在解决设计问题方面的经验,以及这些知识与城市和建筑模式之间有何关联。有一天,亚历山大突然发现,重复使用这些模式可以让某些设计构造取得我们期望的最佳效果。
亚历山大与萨拉-石川佳纯和穆雷 西乐弗斯坦合作
- android高级组件使用(一)
百合不是茶
androidRatingBarSpinner
1、自动完成文本框(AutoCompleteTextView)
AutoCompleteTextView从EditText派生出来,实际上也是一个文本编辑框,但它比普通编辑框多一个功能:当用户输入一个字符后,自动完成文本框会显示一个下拉菜单,供用户从中选择,当用户选择某个菜单项之后,AutoCompleteTextView按用户选择自动填写该文本框。
使用AutoCompleteTex
- [网络与通讯]路由器市场大有潜力可挖掘
comsci
网络
如果国内的电子厂商和计算机设备厂商觉得手机市场已经有点饱和了,那么可以考虑一下交换机和路由器市场的进入问题.....
这方面的技术和知识,目前处在一个开放型的状态,有利于各类小型电子企业进入
&nbs
- 自写简单Redis内存统计shell
商人shang
Linux shell统计Redis内存
#!/bin/bash
address="192.168.150.128:6666,192.168.150.128:6666"
hosts=(${address//,/ })
sfile="staticts.log"
for hostitem in ${hosts[@]}
do
ipport=(${hostitem
- 单例模式(饿汉 vs懒汉)
oloz
单例模式
package 单例模式;
/*
* 应用场景:保证在整个应用之中某个对象的实例只有一个
* 单例模式种的《 懒汉模式》
* */
public class Singleton {
//01 将构造方法私有化,外界就无法用new Singleton()的方式获得实例
private Singleton(){};
//02 申明类得唯一实例
priva
- springMvc json支持
杨白白
json springmvc
1.Spring mvc处理json需要使用jackson的类库,因此需要先引入jackson包
2在spring mvc中解析输入为json格式的数据:使用@RequestBody来设置输入
@RequestMapping("helloJson")
public @ResponseBody
JsonTest helloJson() {
- android播放,掃描添加本地音頻文件
小桔子
最近幾乎沒有什麽事情,繼續鼓搗我的小東西。想在項目中加入一個簡易的音樂播放器功能,就像華為p6桌面上那麼大小的音樂播放器。用過天天動聽或者QQ音樂播放器的人都知道,可已通過本地掃描添加歌曲。不知道他們是怎麼實現的,我覺得應該掃描設備上的所有文件,過濾出音頻文件,每個文件實例化為一個實體,記錄文件名、路徑、歌手、類型、大小等信息。具體算法思想,
- oracle常用命令
aichenglong
oracledba常用命令
1 创建临时表空间
create temporary tablespace user_temp
tempfile 'D:\oracle\oradata\Oracle9i\user_temp.dbf'
size 50m
autoextend on
next 50m maxsize 20480m
extent management local
- 25个Eclipse插件
AILIKES
eclipse插件
提高代码质量的插件1. FindBugsFindBugs可以帮你找到Java代码中的bug,它使用Lesser GNU Public License的自由软件许可。2. CheckstyleCheckstyle插件可以集成到Eclipse IDE中去,能确保Java代码遵循标准代码样式。3. ECLemmaECLemma是一款拥有Eclipse Public License许可的免费工具,它提供了
- Spring MVC拦截器+注解方式实现防止表单重复提交
baalwolf
spring mvc
原理:在新建页面中Session保存token随机码,当保存时验证,通过后删除,当再次点击保存时由于服务器端的Session中已经不存在了,所有无法验证通过。
1.新建注解:
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
- 《Javascript高级程序设计(第3版)》闭包理解
bijian1013
JavaScript
“闭包是指有权访问另一个函数作用域中的变量的函数。”--《Javascript高级程序设计(第3版)》
看以下代码:
<script type="text/javascript">
function outer() {
var i = 10;
return f
- AngularJS Module类的方法
bijian1013
JavaScriptAngularJSModule
AngularJS中的Module类负责定义应用如何启动,它还可以通过声明的方式定义应用中的各个片段。我们来看看它是如何实现这些功能的。
一.Main方法在哪里
如果你是从Java或者Python编程语言转过来的,那么你可能很想知道AngularJS里面的main方法在哪里?这个把所
- [Maven学习笔记七]Maven插件和目标
bit1129
maven插件
插件(plugin)和目标(goal)
Maven,就其本质而言,是一个插件执行框架,Maven的每个目标的执行逻辑都是由插件来完成的,一个插件可以有1个或者几个目标,比如maven-compiler-plugin插件包含compile和testCompile,即maven-compiler-plugin提供了源代码编译和测试源代码编译的两个目标
使用插件和目标使得我们可以干预
- 【Hadoop八】Yarn的资源调度策略
bit1129
hadoop
1. Hadoop的三种调度策略
Hadoop提供了3中作业调用的策略,
FIFO Scheduler
Fair Scheduler
Capacity Scheduler
以上三种调度算法,在Hadoop MR1中就引入了,在Yarn中对它们进行了改进和完善.Fair和Capacity Scheduler用于多用户共享的资源调度
2. 多用户资源共享的调度
- Nginx使用Linux内存加速静态文件访问
ronin47
Nginx是一个非常出色的静态资源web服务器。如果你嫌它还不够快,可以把放在磁盘中的文件,映射到内存中,减少高并发下的磁盘IO。
先做几个假设。nginx.conf中所配置站点的路径是/home/wwwroot/res,站点所对应文件原始存储路径:/opt/web/res
shell脚本非常简单,思路就是拷贝资源文件到内存中,然后在把网站的静态文件链接指向到内存中即可。具体如下:
- 关于Unity3D中的Shader的知识
brotherlamp
unityunity资料unity教程unity视频unity自学
首先先解释下Unity3D的Shader,Unity里面的Shaders是使用一种叫ShaderLab的语言编写的,它同微软的FX文件或者NVIDIA的CgFX有些类似。传统意义上的vertex shader和pixel shader还是使用标准的Cg/HLSL 编程语言编写的。因此Unity文档里面的Shader,都是指用ShaderLab编写的代码,然后我们来看下Unity3D自带的60多个S
- CopyOnWriteArrayList vs ArrayList
bylijinnan
java
package com.ljn.base;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
/**
* 总述:
* 1.ArrayListi不是线程安全的,CopyO
- 内存中栈和堆的区别
chicony
内存
1、内存分配方面:
堆:一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式是类似于链表。可能用到的关键字如下:new、malloc、delete、free等等。
栈:由编译器(Compiler)自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中
- 回答一位网友对Scala的提问
chenchao051
scalamap
本来准备在私信里直接回复了,但是发现不太方便,就简要回答在这里。 问题 写道 对于scala的简洁十分佩服,但又觉得比较晦涩,例如一例,Map("a" -> List(11,111)).flatMap(_._2),可否说下最后那个函数做了什么,真正在开发的时候也会如此简洁?谢谢
先回答一点,在实际使用中,Scala毫无疑问就是这么简单。
- mysql 取每组前几条记录
daizj
mysql分组最大值最小值每组三条记录
一、对分组的记录取前N条记录:例如:取每组的前3条最大的记录 1.用子查询: SELECT * FROM tableName a WHERE 3> (SELECT COUNT(*) FROM tableName b WHERE b.id=a.id AND b.cnt>a. cnt) ORDER BY a.id,a.account DE
- HTTP深入浅出 http请求
dcj3sjt126com
http
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则。计算机专家设计出HTTP,使HTTP客户(如Web浏览器)能够从HTTP服务器(Web服务器)请求信息和服务,HTTP目前协议的版本是1.1.HTTP是一种无状态的协议,无状态是指Web浏览器和Web服务器之间不需要建立持久的连接,这意味着当一个客户端向服务器端发出请求,然后We
- 判断MySQL记录是否存在方法比较
dcj3sjt126com
mysql
把数据写入到数据库的时,常常会碰到先要检测要插入的记录是否存在,然后决定是否要写入。
我这里总结了判断记录是否存在的常用方法:
sql语句: select count ( * ) from tablename;
然后读取count(*)的值判断记录是否存在。对于这种方法性能上有些浪费,我们只是想判断记录记录是否存在,没有必要全部都查出来。
- 对HTML XML的一点认识
e200702084
htmlxml
感谢http://www.w3school.com.cn提供的资料
HTML 文档中的每个成分都是一个节点。
节点
根据 DOM,HTML 文档中的每个成分都是一个节点。
DOM 是这样规定的:
整个文档是一个文档节点
每个 HTML 标签是一个元素节点
包含在 HTML 元素中的文本是文本节点
每一个 HTML 属性是一个属性节点
注释属于注释节点
Node 层次
- jquery分页插件
genaiwei
jqueryWeb前端分页插件
//jquery页码控件// 创建一个闭包 (function($) { // 插件的定义 $.fn.pageTool = function(options) { var totalPa
- Mybatis与Ibatis对照入门于学习
Josh_Persistence
mybatisibatis区别联系
一、为什么使用IBatis/Mybatis
对于从事 Java EE 的开发人员来说,iBatis 是一个再熟悉不过的持久层框架了,在 Hibernate、JPA 这样的一站式对象 / 关系映射(O/R Mapping)解决方案盛行之前,iBaits 基本是持久层框架的不二选择。即使在持久层框架层出不穷的今天,iBatis 凭借着易学易用、
- C中怎样合理决定使用那种整数类型?
秋风扫落叶
c数据类型
如果需要大数值(大于32767或小于32767), 使用long 型。 否则, 如果空间很重要 (如有大数组或很多结构), 使用 short 型。 除此之外, 就使用 int 型。 如果严格定义的溢出特征很重要而负值无关紧要, 或者你希望在操作二进制位和字节时避免符号扩展的问题, 请使用对应的无符号类型。 但是, 要注意在表达式中混用有符号和无符号值的情况。
&nbs
- maven问题
zhb8015
maven问题
问题1:
Eclipse 中 新建maven项目 无法添加src/main/java 问题
eclipse创建maevn web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder。
按照maven目录结构,添加src/main/ja
- (二)androidpn-server tomcat版源码解析之--push消息处理
spjich
javaandrodipn推送
在 (一)androidpn-server tomcat版源码解析之--项目启动这篇中,已经描述了整个推送服务器的启动过程,并且把握到了消息的入口即XmppIoHandler这个类,今天我将继续往下分析下面的核心代码,主要分为3大块,链接创建,消息的发送,链接关闭。
先贴一段XmppIoHandler的部分代码
/**
* Invoked from an I/O proc
- 用js中的formData类型解决ajax提交表单时文件不能被serialize方法序列化的问题
中华好儿孙
JavaScriptAjaxWeb上传文件FormData
var formData = new FormData($("#inputFileForm")[0]);
$.ajax({
type:'post',
url:webRoot+"/electronicContractUrl/webapp/uploadfile",
data:formData,
async: false,
ca
- mybatis常用jdbcType数据类型
ysj5125094
mybatismapperjdbcType
MyBatis 通过包含的jdbcType
类型
BIT FLOAT CHAR