【 TVM 教程】microTVM PyTorch 教程

Apache TVM 是一个深度的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 →https://tvm.hyper.ai/

作者:Mehrdad Hessar

该教程展示了如何使用 PyTorch 模型进行 microTVM 主机驱动的 AOT 编译。此教程可以在使用 C 运行时(CRT)的 x86 CPU 上执行。

注意: 此教程仅在使用 CRT 的 x86 CPU 上运行,不支持在 Zephyr 上运行,因为该模型不适用于我们当前支持的 Zephyr 单板。

安装 microTVM Python 依赖项

TVM 不包含用于 Python 串行通信包,因此在使用 microTVM 之前我们必须先安装一个。我们还需要TFLite来加载模型。
pip install pyserial==3.5 tflite==2.1

import pathlib
import torch
import torchvision
from torchvision import transforms
import numpy as np
from PIL import Image

import tvm
from tvm import relay
from tvm.contrib.download import download_testdata
from tvm.relay.backend import Executor
import tvm.micro.testing

加载预训练 PyTorch 模型

首先,从 torchvision 中加载预训练的 MobileNetV2 模型。然后,下载一张猫的图像并进行预处理,以便用作模型的输入。

model = torchvision.models.quantization.mobilenet_v2(weights="DEFAULT", quantize=True)
model = model.eval()

input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()

img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true"
img_path = download_testdata(img_url, "cat.png", module="data")
img = Image.open(img_path).resize((224, 224))

# 预处理图片并转换为张量
my_preprocess = transforms.Compose(
    [
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)
img = my_preprocess(img)
img = np.expand_dims(img, 0)

input_name = "input0"
shape_list = [(input_name, input_shape)]
relay_mod, params = relay.frontend.from_pytorch(scripted_model, shape_list)

输出:

/venv/apache-tvm-py3.8/lib/python3.8/site-packages/torch/ao/quantization/utils.py:310: UserWarning: must run observer before calling calculate_qparams. Returning default values.
  warnings.warn(
Downloading: "https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth" to /workspace/.cache/torch/hub/checkpoints/mobilenet_v2_qnnpack_37f702c5.pth

  0%|          | 0.00/3.42M [00:00 ver
/venv/apache-tvm-py3.8/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
  other = LooseVersion(other)

定义目标、运行时与执行器

在本教程中,我们使用 AOT 主机驱动执行器。为了在 x86 机器上对嵌入式模拟环境编译模型,我们使用 C 运行时(CRT),并使用主机微型目标。使用该设置,TVM 为 C 运行时编译可以在 x86 CPU 机器上运行的模型,可以在物理微控制器上运行的相同流程。CRT 使用 src/runtime/crt/host/main.cc 中的 main()。要使用物理硬件,请将 board 替换为另一个物理微型目标,例如 nrf5340dk_nrf5340_cpuapp 或 mps2_an521,并将平台类型更改为 Zephyr。在《为 Arduino 上的 microTVM 训练视觉模型》和《microTVM TFLite 教程》中,可以看到 更多目标示例。

target = tvm.micro.testing.get_target(platform="crt", board=None)

# 使用 C 运行时 (crt) 并通过设置 system-lib 为 True 打开静态链接
runtime = tvm.relay.backend.Runtime("crt", {"system-lib": True})

# 使用 AOT 执行器代替图或 vm 执行器。不要使用未包装的 API 或 C 风格调用
executor = Executor("aot")

编译模型

现在为目标编译模型:

with tvm.transform.PassContext(
    opt_level=3,
    config={"tir.disable_vectorize": True},
):
    module = tvm.relay.build(
        relay_mod, target=target, runtime=runtime, executor=executor, params=params
    )

创建 microTVM 项目

现在,我们已经将编译好的模型作为 IRModule 准备好,我们还需要创建一个固件项目,以便在 microTVM 中使用编译好的模型。为此,我们需要使用 Project API。

template_project_path = pathlib.Path(tvm.micro.get_microtvm_template_projects("crt"))
project_options = {"verbose": False, "workspace_size_bytes": 6 * 1024 * 1024}

temp_dir = tvm.contrib.utils.tempdir() / "project"
project = tvm.micro.generate_project(
    str(template_project_path),
    module,
    temp_dir,
    project_options,
)

构建、烧录和执行模型

接下来,我们构建 microTVM项 目并进行烧录。烧录步骤特定于物理微控制器,如果通过主机的 main.cc 模拟微控制器,或者选择 Zephyr 模拟单板作为目标,则会跳过该步骤。

project.build()
project.flash()

input_data = {input_name: tvm.nd.array(img.astype("float32"))}
with tvm.micro.Session(project.transport()) as session:
    aot_executor = tvm.runtime.executor.aot_executor.AotModule(session.create_aot_executor())
    aot_executor.set_input(**input_data)
    aot_executor.run()
    result = aot_executor.get_output(0).numpy()

查询 Synset 名称

查询在 1000 个类别 Synset 中的 top-1 的预测。

synset_url = (
    "https://raw.githubusercontent.com/Cadene/"
    "pretrained-models.pytorch/master/data/"
    "imagenet_synsets.txt"
)
synset_name = "imagenet_synsets.txt"
synset_path = download_testdata(synset_url, synset_name, module="data")
with open(synset_path) as f:
    synsets = f.readlines()

synsets = [x.strip() for x in synsets]
splits = [line.split(" ") for line in synsets]
key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits}

class_url = (
    "https://raw.githubusercontent.com/Cadene/"
    "pretrained-models.pytorch/master/data/"
    "imagenet_classes.txt"
)
class_path = download_testdata(class_url, "imagenet_classes.txt", module="data")
with open(class_path) as f:
    class_id_to_key = f.readlines()

class_id_to_key = [x.strip() for x in class_id_to_key]

# Get top-1 result for TVM
top1_tvm = np.argmax(result)
tvm_class_key = class_id_to_key[top1_tvm]

# Convert input to PyTorch variable and get PyTorch result for comparison
with torch.no_grad():
    torch_img = torch.from_numpy(img)
    output = model(torch_img)

    # Get top-1 result for PyTorch
    top1_torch = np.argmax(output.numpy())
    torch_class_key = class_id_to_key[top1_torch]

print("Relay top-1 id: {}, class name: {}".format(top1_tvm, key_to_classname[tvm_class_key]))
print("Torch top-1 id: {}, class name: {}".format(top1_torch, key_to_classname[torch_class_key]))

输出结果:

Relay top-1 id: 282, class name: tiger cat
Torch top-1 id: 282, class name: tiger cat

该脚本总运行时间:(1分26.552秒)

下载 Python 源代码:micro_pytorch.py

下载 Jupyter notebook:micro_pytorch.ipynb

你可能感兴趣的:(【 TVM 教程】microTVM PyTorch 教程)