- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- Python -- cpython
ThirstyBlue
pythonpython
[转自]http://blog.donews.com/lemur/archive/category/http://blog.csdn.net/balabalamerobert/article/details/567580CPython源码剖析系列Python源码剖析[1]——编译PythonPython源码剖析[2]——对象机制Python源码剖析[3]——整数对象(1)Python源码剖析[4]
- 至逝去的伟人——爱因斯坦
青岛卫校一七药一
阿尔伯特·爱因斯坦(Albert.Einstein,1879年3月14日—1955年4月18日),出生于德国符腾堡王国乌尔姆市,毕业于苏黎世联邦理工学院,犹太裔物理学家。爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖
- 深度剖析AI人工智能情感分析的算法原理
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构人工智能算法easyuiai
深度剖析AI人工智能情感分析的算法原理关键词:情感分析、自然语言处理、机器学习、深度学习、文本分类、情感词典、BERT摘要:本文将深入浅出地讲解AI情感分析的技术原理,从基础概念到核心算法,再到实际应用。我们将探索计算机如何理解人类情感,分析文本背后的情绪色彩,并介绍当前最先进的情感分析技术。通过生活化的比喻和代码实例,帮助读者全面理解这一AI领域的重要应用。背景介绍目的和范围情感分析(Senti
- Microservices Security Questions - 3
张羽辰
QuestionDoyouhaveapasswordreminderfeature?Coulditbeusedtoenumerateuseraccounts?AnswerWecan'tassumetheusertorememberthepasswordforever,butsometimeswedoneedtohelppeopletorecallthepasswordtoavoidsendrese
- 基于BERT的情感分析
机智的小神仙儿
深度学习自然语言处理bert人工智能深度学习自然语言处理
基于BERT的情感分析1.项目背景情感分析(SentimentAnalysis)是自然语言处理的重要应用之一,用于判断文本的情感倾向,如正面、负面或中性。随着深度学习的发展,预训练语言模型如BERT在各种自然语言处理任务中取得了显著的效果。本项目利用预训练语言模型BERT,构建一个能够对文本进行情感分类的模型。2.项目结构sentiment-analysis/├──data/│├──train.c
- Python----大模型( RAG的向量化(embedding))
蹦蹦跳跳真可爱589
Python大模型pythonembedding开发语言人工智能
一、向量化向量化是将非结构化数据(如文本、图像等)转化为数字表示的一种过程。在RAG中,通常会使用预训练的Transformer模型(如BERT、RoBERTa等)将文本表示为高维的向量。这些向量能够捕捉到数据的语义信息,从而在向量空间中表示相似性。两段相似的文本在向量空间中将非常接近。快速检索:向量化将文本转换为向量后,可以通过向量相似度算法(如余弦相似度)快速检索与查询相关的信息。语义理解:通
- 配图丨个性微信朋友圈背景图
画像集
每天早晨请记得打开手机,查收我的礼物hedaythatyouseemeldandIamalreadynot,havepatienceandtrytounderstandme…IfIgetdirtywheneating…ifIcannotdress…havepatience.RememberthehoursIspentteachingittoyou.If,whenIspeaktoyou,Irepea
- 模型系列(篇一)-Bert
小新学习屋
大模型知识点bert人工智能深度学习自然语言处理大模型
简介Devlin在2018年提出BERT(BidirectionalEncoderRepresentationfromTransformer),是自编码的语言建模方法。模型详细介绍结构BERT由12层Transformer组成输入BERT的输入形式:[CLS]文本1[SEP]文本2[SEP]。采用这种形式的原因:MLM对于输入形式没有要求,但是NSP要求模型的输入是两段文本,因为在预训练阶段输入形
- 基于Python根据两个字符串给出相似度/近似度_Python实现字符串语义相似度算法(附上多种实现算法)
袁袁袁袁满
Python实用技巧大全python算法开发语言相似度自然语言处理相似度算法sklearn
以下是几种基于语义的字符串相似度计算方法,每种方法都会返回0.0到1.0之间的相似度分数(保留一位小数)。文章目录方法1:计算Levenshtein距离(基于字符的相似度)方法2:使用Sentence-BERT预训练模型方法3:使用spaCy进行语义相似度比较方法4:使用spaCy和词向量方法5:使用UniversalSentenceEncoder(USE)方法6:使用BERT-as-Servic
- LoRA中的低秩矩阵估计
LoRA(Low-RankAdaptation)是一种用于微调大型语言模型(LLM)的高效方法,尤其在资源有限的环境下表现出色。其核心思想是通过低秩矩阵来近似微调过程中权重矩阵的变化,从而大幅减少需要训练的参数数量。---\paragraph{1.背景:微调与参数效率}在自然语言处理(NLP)中,大型语言模型(如GPT、BERT等)通过预训练学习了丰富的语言知识。然而,为了适应特定任务或新数据,通
- bert中最大处理序列长度超过512的处理策略
lbertj
NLPbert自然语言处理python
导读:由于bert文本长度最大为512,因此当文本超过512时,需要改进bert。本文就此改进进行阐述。针对长度超过512的文本,可以应用如下转换策略(预留[CLS]和[SEP]):(1)head-only:前510tokens(2)tail-only:后510tokens;(3)head+tail:根据经验选择前128和382tokens(4)分段:首先将输入文本(长度为L)分成k=L/510个
- BERT 的“池化策略”
AI扶我青云志
bert人工智能深度学习
为什么在BERT的config.json中会出现池化层(pooling)相关的参数。这个问题其实触及了BERT输出与下游任务之间的桥梁设计,也是你理解BERT在实际应用中如何工作的关键环节。首先明确:BERT的原始Transformer模块没有传统的池化层BERT是基于Transformer构建的,Transformer输出的是:sequence_output:Tensorofshape(batc
- BERT模型架构
大多_C
bert人工智能深度学习
BertModel((embeddings):BertEmbeddings((word_embeddings):Embedding(30522,768,padding_idx=0)(position_embeddings):Embedding(512,768)(token_type_embeddings):Embedding(2,768)(LayerNorm):LayerNorm((768,),e
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 在美国,现在有超过10万台atm机允许你用借记卡购买比特币
麦田财经
在美国,通过普通自动取款机购买比特币已经成为现实。这一进展预示着Genmega和LibertyX之间最近的合作关系。通过这种合作,人们可以用借记卡从多台atm机上购买比特币。通过ATM机使用借记卡购买比特币“金融时报”2018年10月15日(星期一)发布的一份新闻稿显示,该国所有的Genmega自动取款机现在基本上都是比特币自动取款机。在合作的基础上,Genmega自动取款机现在将提供Freety
- 多语言文本分类在AI应用中的实践
AI原生应用开发
人工智能分类数据挖掘ai
多语言文本分类在AI应用中的实践关键词:多语言文本分类、自然语言处理、机器学习、深度学习、BERT、迁移学习、跨语言模型摘要:本文深入探讨多语言文本分类在AI领域的应用实践。我们将从基础概念出发,逐步讲解其核心原理、技术架构和实现方法,并通过实际案例展示如何构建一个高效的多语言文本分类系统。文章将涵盖从传统机器学习方法到最先进的深度学习技术,特别关注跨语言迁移学习在实际业务场景中的应用。背景介绍目
- 敏捷史话(六):也许这个人能拯救你的代码 —— Robert C. Martin
敏捷初级运动员
本文摘自敏捷开发。RobertC.Martin(罗伯特·C·马丁),作为世界级软件开发大师、设计模式和敏捷开发先驱、C++Report杂志前主编,也是敏捷联盟(AgileAlliance)的第一任主席,我们尊称他为“Bob大叔(UncleBob)”。如今,年逾六十的Bob大叔过着典型的“斜杠”生活,他不仅是优秀的程序员、畅销书作家、演讲家,以及视频制作者,还是一名柔术爱好者。多年学习柔术的经历,带
- [学习] Hilbert变换:从数学原理到物理意义的深度解析与仿真实验(完整实验代码)
极客不孤独
学习概率论信号处理python数学建模
Hilbert变换:从数学原理到物理意义的深度解析与仿真实验文章目录Hilbert变换:从数学原理到物理意义的深度解析与仿真实验一、数学原理二、作用与物理意义1.构造解析信号2.相位移动特性3.应用场景三、仿真实验实验1:正弦信号的Hilbert变换实验2:调幅信号的Hilbert变换四、结论Hilbert变换是信号处理领域中一项经典而强大的工具,广泛应用于瞬时频率分析、调制解调、相位提取等场景。
- 高效对接全球车企:知行之桥满足科伯舒特Kromberg & Schubert EDI核心需求
科博舒特(Kromberg&Schubert,K&S)是德国顶尖的汽车线束系统供应商,服务于全球各大知名车企。作为其供应商,满足K&S严苛的EDI要求是实现高效合作、进入其全球供应链的关键环节。知行之桥EDI系统专为应对此类挑战设计,本文将详细解析K&S的核心EDI需求,并展示知行之桥如何提供稳定、高效、自动化的对接方案,助力供应商轻松达标。Kromberg&SchubertEDI项目目标与K&S
- SBERT、CoSENT和BETR以及transformers的区别和联系
panshengnan
NLPnlptransformer
SBERT、CoSENT、BETR和Transformers的区别和联系这几个模型(SBERT、CoSENT、BETR)和框架(Transformers)都是围绕自然语言处理(NLP)的句子嵌入和语义理解任务展开的。它们的联系主要在于基于Transformer架构,并针对特定任务做了优化;区别则在于目标任务、优化策略、训练方法和适用场景等方面。1.联系基于Transformer架构:它们的核心编码
- SFT:大型语言模型专业化定制的核心技术体系——原理、创新与应用全景
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理深度学习机器学习微调SFT
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!以下基于权威期刊、会议论文及技术报告,对监督微调(SupervisedFine-Tuning,SFT)的技术框架、创新方法与实际应用进行系统梳理:一、核心定义与技术原理基本概念SFT是在预训练语言模型(如GPT、BERT)基础上,利用标注数据集对模型进
- LLM系统性学习完全指南(初学者必看系列)
GA琥珀
LLM学习人工智能语言模型
前言这篇文章将系统性的讲解LLM(LargeLanguageModels,LLM)的知识和应用。我们将从支撑整个领域的数学与机器学习基石出发,逐步剖析自然语言处理(NLP)的经典范式,深入探究引发革命的Transformer架构,并按时间顺序追溯从BERT、GPT-2到GPT-4、Llama及Gemini等里程碑式模型的演进。随后,我们将探讨如何将这些强大的基础模型转化为实用、安全的应用,涵盖对齐
- HW prefetcher之CDP(Content-Directed Data Prefetching)
Chip Design
xPUChipDesignCPUGEM5
CDP是Content-DirectedDataPrefetching的缩写,它基于RobertCooksey和StephanJourdan提出的"Stateless,Content-DirectedDataPrefetchingMechanism"论文实现。是一种内容导向的数据预取机制,CDP通过分析内存中的数据内容来识别可能的指针,当识别到指针时,它会预取指针指向的内存地址。CDP使用VPN表
- 【AI大模型】LLM模型架构深度解析:BERT vs. GPT vs. T5
我爱一条柴ya
学习AI记录ai人工智能AI编程python
引言Transformer架构的诞生(Vaswanietal.,2017)彻底改变了自然语言处理(NLP)。在其基础上,BERT、GPT和T5分别代表了三种不同的模型范式,主导了预训练语言模型的演进。理解它们的差异是LLM开发和学习的基石。一、核心架构对比特性BERT(BidirectionalEncoder)GPT(GenerativePre-trainedTransformer)T5(Text
- bert中 [CLS] 和 [SEP] 表示什么意思?
[CLS]和[SEP]是BERT中的两个特殊标记符号,在BERT的输入文本中起到特殊的作用。[CLS]是"classification"的缩写,在文本分类任务中,它通常表示句子或文档的开头。在BERT中,[CLS]对应着输入文本中第一个词的词向量,输出层中的第一个神经元通常会被用来预测文本的类别。[SEP]是"separator"的缩写,它通常表示句子或文档的结尾。在BERT中,[SEP]对应着输
- 新型BERT勒索软件肆虐:多线程攻击同时针对Windows、Linux及ESXi系统
趋势科技安全分析师发现,一个代号为BERT(内部追踪名WaterPombero)的新型勒索软件组织正在亚洲、欧洲和美国展开多线程攻击。该组织主要针对医疗保健、科技和会展服务行业,其活动范围显示其正成为勒索软件生态中的新兴威胁力量。攻击技术分析在Windows系统中,BERT通过PowerShell加载器(start.ps1)实施攻击,该脚本会执行以下操作:禁用WindowsDefender防火墙和
- Ntfs!LfsReadRestart函数和Ntfs!_LFCB->LogHeadBuffer的关系
sitelist
nt4源代码分析LfsReadRestartLogHeadBufferRESTART_PAGE_HERT_PAGE_HEADER
Ntfs!LfsReadRestart函数和Ntfs!_LFCB->LogHeadBuffer的关系第0部分:////RememberthislogfileintheLfcb.//ThisLfcb->FileObject=LogFile;SetFlag(ThisLfcb->Flags,(LFCB_READ_FIRST_RESTART|LFCB_READ_SECOND_RESTART));if(Lf
- Transformer、BERT等模型原理与应用案例
程序猿全栈の董(董翔)
人工智能热门技术领域transformerbert深度学习
Transformer、BERT等模型原理与应用案例Transformer模型原理Transformer是一种基于注意力机制的深度学习模型架构,由Vaswani等人在2017年的论文"AttentionIsAllYouNeed"中提出。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖自注意力机制来处理输入序列的全局依赖关系。核心组件多头自注意力机制(Mul
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置