- OpenCV图像梯度边缘轮廓处理
Jiamusi_night
opencv计算机视觉人工智能
一、梯度处理的sobel算子函数函数名:cv2.Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=None)功能:用于计算图像梯度(gradient)的函数参数:src:输入图像,它应该是灰度图像。ddepth:输出图像的所需深度(数据类型)。通常,你可以使用-1来表示与输入图像相同的深度,或者使用如cv2.CV_64F等来指定特定
- 【一看就会】autoware universe中有关control部分的参数设置
不断学习加努力
自动驾驶算法
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、车辆模型1.mirror.param2.simulator_model.param3.vehicle_info.param二、跟踪控制相关参数1.pid.param.yaml2.mpc.param.yaml2.pure_pursuit.param.yaml三、其余控制参数1.`autoware_autonomous_e
- 【Oracle】ORA-00257: 归档程序错误
-XWB-
Oracleoracle
一、出现该问题先确认磁盘空间使用率df-lh查看(这里是因为我处理后的图,报错时/oradata的使用率是100%的)二、查看是/oradata哪个目录下的文件占用空间du-h--max-depth=1路径逐个目录排查下去三、当确认是arch目录下的.arc文件占用磁盘空间时,即判定时归档日志文件过大导致的问题。接下来就是要对归档日志文件进行清理了。四、进入到oracle用户,在进入rman工具。
- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- 图片位深转换终极指南:使用Python将任意位深图片转换为24位深
SuperBeen
Pythonpython开发语言嵌入式硬件
什么是图片位深?图片位深(BitDepth)指的是每个像素用于表示颜色的位数。常见的位深包括:1位:黑白二值图像8位:灰度图像(256级灰度)24位:真彩色图像(RGB各8位,约1677万色)32位:带透明通道的图像(RGBA)为什么需要转换为24位深?兼容性问题:许多软件和网页不支持非标准位深的图片显示异常:23位深图片在某些设备上可能出现色彩失真格式限制:JPEG等常见格式只支持8位/通道(2
- Yolov5s/Yolov8s网络结构图
Goodness2020
机器学习YOLO
一、网络模型配置Yolov5s#Parametersnc:1#numberofclassesdepth_multiple:0.33#modeldepthmultiplewidth_multiple:0.50#layerchannelmultipleanchors:-[10,13,16,30,33,23]#P3/8-[30,61,62,45,59,119]#P4/16-[116,90,156,198
- docker /var/lib/docker/overlay2目录把磁盘空间占满问题
laizhenghua
Dockerdocker容器运维
1、查看服务器磁盘空间df-h果然100%了,docker系统文件把磁盘空间占满了。2、进入overlay2目录,查找那个容器工作目录占用最高cd/var/lib/docker/overlay2du-h--max-depth=1详见下图好家伙占用110G!复制目录名称2c3c48ccac533c5d4a366d45a19bb91ec2270fd13c5c51cc14d0cbae309fba6d,确
- 104. 二叉树的最大深度
间歇性发呆
给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。说明:叶子节点是指没有子节点的节点。示例:给定二叉树[3,9,20,null,null,15,7],3/\920/\157返回它的最大深度3。来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/maximum-depth-of-binary-tree著作权归领扣
- 磁盘性能测试参数
平凡之路001
LINUX性能测试参数:•测试随机写IOPS:fio-direct=1-iodepth=128-rw=randwrite-ioengine=libaio-bs=4k-size=1G-numjobs=1-runtime=1000-group_reporting-filename=iotest-name=Rand_Write_Testing•测试随机读IOPS:fio-direct=1-iodepth
- Flutter状态管理篇之ChangeNotifier(二)
目录前言一、ChangeNotifier定义1.ChangeNotifier定义2.Listenable的定义二、继承体系三、核心方法解析1.类结构与属性分析1.Listenable的定义2..核心字段1.属性解析1._count2._listeners3.为什么不用const[]4._notificationCallStackDepth5._reentrantlyRemovedListeners
- 相机内外参矩阵/Mono2Depth相机转换矩阵,位姿矩阵
初岘
矩阵线性代数机器人
Mono2Depth_Mat转换矩阵,代表了mono和depth的相对关系,depth有深度信息,3d空间;mono是2d图像,通过转换矩阵可以将3d空间投影到2d空间,也就是图像中的物体有了深度信息。物体在空间中的姿态可以理解为坐标+方向,一个向量(6个数),那么一个四维的转换矩阵参数是够用的。位姿矩阵(PoseMatrix):位姿矩阵描述了一个物体在3D空间中的位置和方向。它通常是一个4x4的
- KAIST:LLM混合递归推理
大模型任我行
大模型-推理优化人工智能自然语言处理语言模型论文笔记
标题:Mixture-of-Recursions:LearningDynamicRecursiveDepthsforAdaptiveToken-LevelComputation来源:arXiv,2507.10524摘要缩放语言模型解锁了令人印象深刻的能力,但伴随的计算和内存需求使训练和部署都很昂贵。现有的效率工作通常针对参数共享或自适应计算,留下了如何同时实现两者的问题。我们引入了混合递归(MoR
- mpiigaze的安装过程一
匆匆整棹还
python
mpiigaze链接mpiigaze应该不是作者本人写的,而是社区工作者的杰作,对原论文Appearance-BasedGazeEstimationintheWild的代码进行的一些复现1.创建conda环境2.问题Buildingwheelsforcollectedpackages:dlibBuildingwheelfordlib(pyproject.toml)...errorerror:sub
- MLE最大似然估计:数据驱动的概率模型参数推断基石
大千AI助手
人工智能Python#OTHER数据挖掘人工智能机器学习算法MLE参数估计概率论
从样本中还原未知分布的本质规律本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心思想与数学定义最大似然估计(MaximumLikelihoodEstimation,MLE)是频率学派的参数估计方法,其核心思想为:选择使观测数据出现概率最大的参数值。给定独立同分布样本X={x1,x2,…,xn}
- 多相机depth-rgb图组完整性分拣器_MATLAB实现
文件夹中数据规则为,一张BMP格式的RGB图像会有一张同名的raw格式的深度图,一共有三个相机,三个相机的数据为一组,例如:1_0.bmp,1_0.raw,1_1.bmp,1_1.raw,1_2.bmp,1_2.raw为一组相机的数据。现在文件夹中数据存在缺失情况,可能缺失某个相机的raw格式的深度。使用matlab代码筛选文件夹中的数据,将一组数据中存在缺少raw格式的这组数据放在一个文件夹,不
- day 24 |93.复原IP地址,78.子集,90.子集II
bindloy
算法
93.复原IP地址93.复原IP地址-力扣(LeetCode)classSolution{public:boolvalidNumber(stringsNumber){//“判断是否合格”if(stoi(sNumber)paths;voidrestoreIpAddresses(strings,intstart,stringpath,intdepth){if(start>=s.size()&&dept
- llama-factory微调Qwen2.5-7B-instruct实战,看这一篇就够了!!!(含windows和linux)
亚伯拉罕·黄肯
大模型llama人工智能大模型llamafactory微调Qwen
一.安装llama-factoryllama-factort的网站:https://github.com/hiyouga/LLaMA-Factory安装llama-factory很简单,打开github后滑到安装LLaMAFactory跟着步骤走即可。安装LLaMAFactorygitclone--depth1https://github.com/hiyouga/LLaMA-Factory.git
- 铸造软件交付的“自动驾驶”系统——AI大模型如何引爆DevOps革命
LucianaiB
评测人工智能自动驾驶devops
铸造软件交付的“自动驾驶”系统——AI大模型如何引爆DevOps革命嗨,我是LucianaiB!总有人间一两风,填我十万八千梦。路漫漫其修远兮,吾将上下而求索。摘要(Abstract)本文深入探讨了人工智能大模型(AILargeModels)如何驱动DevOps从“自动化”(Automation)向“自主化”(Autonomous)的革命性跃迁。文章指出,AI大模型正成为现代软件工厂的“中枢神经系
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- AI初学者如何对大模型进行微调?——零基础保姆级实战指南
仅需8GB显存,三步完成个人专属大模型训练四步实战:从环境配置到模型发布步骤1:云端环境搭建(10分钟)推荐使用阿里魔塔ModelScope免费GPU资源:#注册后执行环境初始化pip3install--upgradepippip3installbitsandbytes>=0.39.0gitclone--depth1https://github.com/hiyouga/LLaMA-Factory.
- The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models
UnknownBody
LLMDailyCausalandReasoning语言模型人工智能
文章主要内容总结本文围绕大推理模型(LRMs)的推理能力展开系统研究,通过可控谜题环境分析其在不同问题复杂度下的表现,揭示其优势与局限性:研究背景与问题:当前LRMs(如OpenAIo1/o3、DeepSeek-R1等)虽在推理基准测试中表现提升,但对其底层能力、缩放特性及局限性的理解不足。现有评估依赖数学和编码基准,存在数据污染且缺乏对推理轨迹的深度分析。研究方法:采用可控谜题环境(如汉诺塔、跳
- AttributeError: ‘numpy.ndarray‘ object has no attribute ‘unsqueeze‘
ddfa1234
numpypython深度学习
z=z*pts_depth.unsqueeze(1)*0.1AttributeError:'numpy.ndarray'objecthasnoattribute'unsqueeze'这个错误是因为unsqueeze()方法是PyTorch张量的方法,而不是NumPy数组的方法。在这里,pts_depth是一个NumPy数组,因此不能使用unsqueeze()方法。如果要在NumPy中实现类似于un
- CppCon 2018 学习:RAPID PROTOTYPING OF GRAPHICS SHADERS IN
虾球xz
CppCon学习c++开发语言
这段内容在讲**着色器(Shader)**的基础概念,尤其是它在现代GPU(图形处理单元)中的作用。以下是逐条解释与理解:“Depictingdepthperceptionin3Dmodelsorillustrationsbyvaryinglevelsofdarkness”—Wikipedia这是**光照/阴影(shading)**的定义,来自维基百科。意思是:为了在二维图像中表现三维感,我们通过
- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- .NET概观
这篇文章很多地方借鉴了DavidChappell的《Understanding.NET》和其他的一些网上的文章,但是也有一些我自己的文字。写这篇文章的本意是希望能用一些较少的文字能给读者对.NET一个全面的、但是并不深入的印象。这里谨对《Understanding.NET》的作者DavidChappell及译者侯捷、荣耀还有其他的作者们表示感谢!.NET概观微软.NET的出现,可以说是一场地震。它
- 自动驾驶:特斯拉 Model Y全自动驾驶交付的技术原理
InnoLink_1024
自动驾驶人工智能自动驾驶人工智能机器学习
特斯拉ModelY首次实现全程无人控制的全自动驾驶交付,依赖于其先进的FSD(FullSelf-Driving)系统,结合强大的硬件和软件架构。以下从自动驾驶技术的角度,详细介绍其工作原理:1.硬件架构:HW5.0感知与计算平台特斯拉ModelY的全自动驾驶交付基于最新的**HW5.0(Hardware5.0)**平台,其核心硬件包括:传感器套件:12个高清摄像头:提供360°视觉覆盖,分辨率高达
- 图论基础知识 深度优先(Depth First Search, 简称DFS),广度优先(Breathe First Search, 简称BFS)
mmaerd
Leetcode刷题学习记录深度优先图论宽度优先机考
图论基础知识学习记录自代码随想录dfs与bfs区别dfs是沿着一个方向去搜,不到黄河不回头,直到搜不下去了,再换方向(换方向的过程就涉及到了回溯)。bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。深度优先搜索理论(DepthFirstSearch,简称DFS)搜索方向,是认准一个方向搜,直到碰壁之后再换方向换
- 26、A* Algorithm: An In-depth Guide to Optimal Pathfinding
tree
C#搜索设计模式精解A*AlgorithmPathfindingHeuristicFunction
A*Algorithm:AnIn-depthGuidetoOptimalPathfinding1.IntroductiontoA*AlgorithmA(pronounced“Astar”)isapowerfulalgorithmwidelyusedforpathfindingandgraphtraversal.Itcombinestheadvantagesofbothuniform-costsea
- libpng使用
weixin_30856965
c/c++php
自己的实现1unsignedintcomponent(png_const_byteprow,png_uint_32x,unsignedintc,unsignedintbit_depth,unsignedintchannels){2png_uint_32bit_offset_hi=bit_depth*((x>>6)*channels);3png_uint_32bit_offset_lo=bit_de
- 深入了解图搜索算法:原理、应用与实现
码农资源网
图搜索算法
1.图搜索算法简介图搜索算法是一种用于在图(Graph)结构中寻找特定目标的算法。图由节点(Node)和边(Edge)组成,节点表示数据或实体,边表示节点之间的关系或连接。图搜索算法的目标通常是从给定的起始节点出发,找到到达目标节点的一条或多条路径。2.常见的图搜索算法2.1深度优先搜索(Depth-FirstSearch,DFS)深度优先搜索是一种递归或栈的搜索方法,从起始节点开始,沿着一条路径
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持