- 博客摘录「 yolo 11从原理、创新点、训练到部署(yolov11代码+教程)」2025年4月28日
G.547
笔记
2.1新的Backbone设计YOLOv11引入了一个改进的Backbone网络架构,采用了CSPNet(CrossStagePartialNetwork)的升级版。CSPNet的引入使得YOLOv11在计算量相对较低的情况下能够更有效地提取深度特征,从而提高模型的表达能力。具体来说,CSPNet通过将特征图进行部分跨层连接,减少了冗余梯度信息,提高了模型的学习效率和泛化能力。2.2SPPF(Sp
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- 考场/工厂违规用机难捕捉?3维度优化方案部署成本直降40%
2501_92487762
视觉检测计算机视觉算法目标检测
开篇痛点工业场景中传统玩手机识别面临三重挑战:小目标检测(手机平均像素占比<0.5%)、遮挡干扰(人手/物体遮挡率超60%)、实时性要求(需200ms内响应)。某安检企业反馈,开源YOLOv5在车间场景误报率高达34%。技术解析:双流特征融合架构陌讯算法创新性融合双路径特征(图1):#陌讯核心代码逻辑(简化版)defdual_path_fusion(backbone):shallow_path=C
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 万字长文详解YOLOv8 yaml 文件,结合模型输出的网络结构图分析Parameters /backbone/head以及三者的数学关联
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例之前写过一篇YOLOv8yaml配置文件逐层的解析:结合YOLOv8源码逐层解读yaml文件的配置,本文主要从整体的角度去解析yaml。YOLOv8模型YOLOv8提供了非常多的模型,详见:https:
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- 《中国电信运营商骨干网:历史、现状与未来演进》系列 第一篇:中国骨干网全景图:一级运营商与专用网络的演进
老马爱知
通信网络#电信运营商网络骨干网电信运营商网络架构数字基础设施互联网科普
一、引言:骨干网——国家“信息大动脉”在当今数字经济蓬勃发展的时代,信息网络已成为国家基础设施的核心组成部分。而在这张错综复杂的信息大网中,骨干网(BackboneNetwork)扮演着“
- YOLOv11 改进策略 | GFPN:超越 BiFPN,跳层与跨尺度连接重塑特征金字塔
YOLOv11改进策略|GFPN:超越BiFPN,跳层与跨尺度连接重塑特征金字塔!介绍颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet和BiFPN等结构是特征金字塔融合的代表。BiFPN作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。
- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- Odoo OWL 框架深度研究(VIP10万字版)
源力祁老师
odoo开发实践学习方法开发语言前端
一、核心理念、架构定位与实践价值前言:为什么需要一份新的前端框架?在Odoo的漫长发展历程中,其前端部分长期依赖于一个基于Backbone.js的自定义Widget系统。这个系统在当时是有效的,但随着前端技术的飞速发展(以React,Vue,Svelte等框架为代表),其固有的命令式编程、手动DOM操作和复杂的继承体系等问题,逐渐成为制约开发效率和应用性能的瓶颈。为了彻底解决这些历史遗留问题,并拥
- 人像抠图学习笔记
AI算法网奇
人脸识别深度学习宝典深度学习神经网络自动驾驶
目录RobustVideoMatting实时视频抠图Modnet预测脚本人脸分割BiseNetV2MODNetu2net:MODNet方法RobustVideoMatting实时视频抠图Modnet预测脚本Modnet效果有时比RobustVideoMatting好,在衣服分割时,backbone是mobilev2gpu512*512速度22ms。importosimportsysimportar
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- YOLOV8模型优化-选择性视角类别整合模块(SPCI):遥感目标检测的注意力增强模型详解
清风AI
YOLO算法魔改系列深度学习算法详解及代码复现计算机视觉算法目标跟踪人工智能计算机视觉YOLOpython目标检测深度学习
一、研究背景与挑战随着卫星和无人机技术的普及,高分辨率遥感影像为城市规划、灾害监测等领域提供了海量数据。然而,遥感目标检测面临三大难题:尺度剧变:目标尺寸从几米到几百米不等(如飞机vs油罐)密集分布:港口/机场等场景存在大量密集目标背景干扰:自然/人造景观交织导致语义混淆现有方法如YOLOv8虽在通用目标检测表现优异,但在遥感场景存在以下局限:Backbone缺乏显式的多尺度特征融合机制传统注意力
- YOLOv5 模型结构详解
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
✅YOLOv5模型结构详解以下是以YOLOv5的最小版本yolov5s为例的模型结构(来自Ultralytics/yolov5官方实现):输入图像大小:640×640×3YOLOv5s的完整模型结构(来自models/yolov5s.yaml)#YOLOv5smodelbackbone:#[from,number,module,args][[-1,1,'Conv',[64,6,2,2]],#0-P
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- YOLOv12改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对A2C2f进行二次创新
Limiiiing
YOLOv12改进专栏YOLOv12深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv12的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新A2C2f,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv
- YOLOv10改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对 C2fCIB 、PSA 进行二次创新
Limiiiing
YOLOv10改进专栏YOLO深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv10的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新C2fCIB、PSA,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:
- 2015-5-10分享的PDF
qq2011705918
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv12改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv12改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv12结合。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准
- YOLOv10改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv10改进专栏YOLO计算机视觉目标检测深度学习
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv10结合。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准
- 【目标检测】backbone究竟有何关键作用?
猫天意
目标检测目标检测人工智能计算机视觉CV
backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合,以满足对不同尺度和类别的目标检测。
- 目标检测模型的主要组成部分
asdfg1258963
目标检测_ai目标检测人工智能计算机视觉
目标检测模型通常由以下几个主要部分组成:1.主干网络(Backbone)主干网络是目标检测模型的核心部分,负责从输入图像中提取特征。常见的主干网络包括:卷积神经网络(CNN):如ResNet、VGG、MobileNet等。它们通过多层卷积操作提取图像的多层次特征。Transformer架构:如VisionTransformer(ViT)及其变体,通过自注意力机制提取全局特征。主干网络的输出是一个特
- 【目标检测】检测网络中neck的核心作用
猫天意
目标检测人工智能计算机视觉CV基础
1.neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。2.neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。3.neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征
- 目标检测:Deformable DETR: Deformable Transformers for End-to-End Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉深度学习算法论文解读
可以查看B站视频(讲的很详细,对照下文内容进行视频观看,效果更佳):(1)DeformableDETR|1、Abstract算法概述(2)DeformableDETR|2、backbone、MultiHeadAttention公式讲解(3)DeformableDETR|3、DeformableAttention、MSDeformAttention、流程讲解摘要DETR最近被提出以消除许多手工设计的
- RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
Limiiiing
RT-DETR改进专栏深度学习目标检测RT-DETR计算机视觉
一、本文介绍本文记录的是基于RevCol的RT-DETR目标检测改进方法研究。RevCol是一种新型神经网络设计范式,它由多个子网(列)及多级可逆连接构成,正向传播时特征逐渐解缠结且保持信息。可逆变换借鉴可逆神经网络思想,设计多级可逆单元用于解决模型对特征图形状的限制以及与信息瓶颈原则的冲突。本文将其应用到RT-DETR中,并配置了原论文中的revcol_tiny、revcol_small、rev
- YOLOv9改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
Limiiiing
YOLOv9改进专栏计算机视觉深度学习YOLO目标检测
一、本文介绍本文记录的是基于CAA注意力模块的YOLOv9目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量更少。专栏目录:YOLOv9改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改
- 2、YOLOv12架构解析:速度与精度的艺术
进取星辰
YOLO
前言:拆解YOLO的"超级大脑"还记得我们上篇文章用5行代码实现的物品检测吗?今天我要带你走进YOLOv12的"大脑",看看这个闪电侠是如何思考的!想象一下:当你走进一家咖啡馆时,你的大脑会:快速扫描整个场景(Backbone)注意到重要区域:柜台、座位区(Neck)精确识别:拿铁咖啡、巧克力蛋糕(Head)YOLOv12的工作方式惊人地相似!下面我们就来拆解这套视觉感知系统:1.整体架构:从三明
- 探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元
郑微殉
探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元Bert-VITS2vits2backbonewithmultilingual-bert项目地址:https://gitcode.com/gh_mirrors/be/Bert-VITS2一、项目介绍Bert-VITS2,如其名,是一个融合了多语言预训练模型——BERT与新一代文本到语音(Text-to-Speech,TT
- 基于RT-DETR的YOLOv8目标检测框架优化及其应用前景
向哆哆
YOLO创新涨点系列YOLO目标检测人工智能yolov8
文章目录什么是RT-DETR?一、YOLOv8与RT-DETR检测头的结合YOLOv8架构概述代码实例:YOLOv8与RT-DETR检测头的集成1.引入必要的库2.YOLOv8Backbone(特征提取)3.RT-DETR检测头4.集成YOLOv8Backbone与RT-DETR头5.模型训练与评估二、YOLOv8与RT-DETR检测头的结合:进一步的优化与调优1.数据增强与多尺度训练数据增强技术
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多