颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet 和 BiFPN 等结构是特征金字塔融合的代表。BiFPN 作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。然而,为了进一步提升 YOLOv11(假设的未来版本)在处理多尺度目标方面的能力,可能需要更强大的颈部网络结构。GFPN(Generalized/Global Feature Pyramid Network 或类似概念),作为一种假设的发表在 ECCV 2024 上的新型颈部网络结构,旨在通过更复杂的跳层连接(Skip Connections) 和跨尺度连接(Cross-Scale Connections),实现比 BiFPN 更强大的特征融合能力,从而提升 YOLOv11 的检测精度。
YOLO 系列算法的检测性能很大程度上取决于其多尺度特征的处理能力。颈部网络负责将骨干网络不同层级(代表不同尺度)的特征有效地结合起来。虽然 BiFPN 通过双向信息流和加权融合在多尺度特征融合方面取得了显著进展,但其连接模式可能仍然存在优化空间。例如,信息传递可能仍然受到层级之间的限制,或者简单的加权求和不足以捕捉不同尺度特征之间复杂的非线性关系。GFPN 的核心思想可能是设计一种全新的、更灵活、更强大的连接模式,允许特征在金字塔的不同层级之间进行更自由、更高效的信息交换。通过引入更复杂的跳层连接(例如,不仅仅是连接相邻层,还连接间隔多层的层)和跨尺度连接(例如,允许任意两个尺度之间直接连接,或者通过学习的门控机制控制连接),GFPN 有望打破 BiFPN 的连接瓶颈,实现更彻底的多尺度特征融合,从而在处理各种尺寸目标时,为 YOLOv11 带来更精确、更鲁鲁棒的检测结果,尤其在处理极端尺度变化或复杂场景时。
GFPN 的动机在于超越现有特征金字塔结构的融合能力:
基于“超越 BiFPN”、“跳层连接”、“跨尺度连接”的描述,GFPN 的工作原理将是高度灵活和强大的多尺度特征融合:
将 GFPN 作为 YOLOv11 的颈部网络,可以显著提升其在以下场景中的性能:
由于 GFPN 是一个假设模块,我们将基于其描述和相关研究趋势,设计一种概念性的实现。它可能包含更复杂的节点结构和连接定义。
这些是 GFPN 的前身,理解它们的结构有助于理解 GFPN 可能的改进方向。
实现 GFPN 层中的一个节点,它接收来自不同尺度和层的输入,并产生融合输出,连接模式比 BiFPN 更复杂。
import torch
import torch.nn as nn
import torch.nn.functional as F
# Assume BasicConv is defined (Conv+BN+Act)
# Assume WeightedFusion is defined
class GFPN_Node(nn.Module):
def __init__(self, dim, num_inputs_from_scales, upsample_scale=2, downsample_scale=2):
"""
Hypothetical GFPN Node.
Args:
dim (int): 输入和输出通道数
num_inputs_from_scales (list): 列表,每个元素表示来自对应尺度(相对于当前尺度)的输入数量。
例如,[-1, 0, 1] 可能表示来自下层、同层、上层。
例如,num_inputs_from_scales = { -2: 1, -1: 1, 0: 1, 1: 1, 2: 1}
表示接收来自低两层、低一层、同层、高一层、高两层的输入。
"""
super().__init__()
self.dim = dim
self.num_inputs_from_scales = num_inputs_from_scales
self.upsample_scale = upsample_scale
self.downsample_scale = downsample_scale
# Need to handle channel adjustment for all inputs if needed
# Assuming inputs are already adjusted to self.dim channels before entering the node.
# Need to handle upsampling and downsampling for inputs from other scales
# These layers are usually shared within a GFPN layer, but called by nodes.
# For a node, it needs to call the appropriate upsample/downsample on its inputs from other scales.
# Let's assume upsample/downsample layers are passed to the node or defined outside.
# A common approach is to define them in the main GFPN Layer class.
# Weighted fusion layer for this node. Number of inputs is sum of inputs from all scales.
self.total_inputs = sum(num_inputs_from_scales.values())
self.weighted_fusion = WeightedFusion(num_inputs=self.total_inputs)
# Output convolution after fusion
self.output_conv = BasicConv(dim, dim, k=3, s=1, p=1)
def forward(self, inputs_dict, upsample_func, downsample_func):
# inputs_dict: Dictionary where keys are scale indices (e.g., -2, -1, 0, 1, 2)
# and values are lists of input feature maps from that relative scale.
# upsample_func: Function to upsample feature maps (e.g., nn.Upsample or a CARAFE instance)
# downsample_func: Function to downsample feature maps (e.g., nn.MaxPool2d or strided conv)
# Collect and align all input feature maps for fusion
fusion_inputs = []
for scale_offset, input_list in inputs_dict.items():
for feat in input_list:
# Align resolution based on scale_offset
# Assuming scale_offset = 0 is the current scale
if scale_offset < 0: # Input from a lower resolution layer (need upsampling)
aligned_feat = upsample_func(feat, scale_factor=(-scale_offset) * self.upsample_scale) # Example: upsample by scale_offset times
elif scale_offset > 0: # Input from a higher resolution layer (need downsampling)
aligned_feat = downsample_func(feat, scale_factor=scale_offset * self.downsample_scale) # Example: downsample by scale_offset times
else: # Input from the current scale
aligned_feat = feat # No resampling needed
# Ensure channel count is already adjusted to self.dim before this node
# Assert shapes match for fusion after alignment
# assert aligned_feat.shape[1:] == inputs_dict[0][0].shape[1:] # Channel count and resolution match the current scale
fusion_inputs.append(aligned_feat)
# Perform weighted fusion
fused_feat = self.weighted_fusion(fusion_inputs)
# Apply output convolution
output_feat = self.output_conv(fused_feat)
return output_feat
class GFPN_Layer(nn.Module):
def __init__(self, in_channels_list, out_channels, num_levels, num_stages=1, connection_pattern={
0:1, -1:1, 1:1}, upsample_scale=2, downsample_scale=2):
"""
Hypothetical GFPN Layer. Stacks multiple GFPN_Nodes and defines their connections.
Args:
in_channels_list (list): Channels from Backbone or previous GFPN layer (from high to low resolution)
out_channels (int): Output channels of GFPN layer at each level
num_levels (int): Number of feature pyramid levels (e.g., 3 for P3, P4, P5)
num_stages (int): Number of times to apply the GFPN structure at each level
connection_pattern (dict): Defines inputs to each node relative to its scale.
e.g., {0:1, -1:1, 1:1} means receive 1 input from current, lower, upper scale.
"""
super().__init__()
self.in_channels_list = in_channels_list
self.out_channels = out_channels
self.num_levels = num_levels
self.num_stages