- 大模型(LLM)推理框架汇总
AIGC大模型 吱屋猪
langchain人工智能AI-native百度产品经理神经网络自然语言处理
MLCLLMsubmodulesinMLCLLM大模型(LLM)好性能通用部署方案,陈天奇(tvm发起者)团队开发.项目链接docs:https://llm.mlc.ai/docs/github:https://github.com/mlc-ai/mlc-llm支持的平台和硬件platforms&hardware支持的模型|Architecture|PrebuiltModelVariants||—
- 【TVM 教程】如何处理 TVM 报错
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/运行TVM时,可能会遇到如下报错:---------------------------------------------------------------AnerroroccurredduringtheexecutionofTVM.F
- 使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南
周情津Raymond
使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南tvm-cnTVMDocumentationinChineseSimplified/TVM中文文档项目地址:https://gitcode.com/gh_mirrors/tv/tvm-cn前言在深度学习模型部署领域,TVM作为一个高效的深度学习编译器栈,能够将训练好的模型优化并部署到各种硬件平台上。本文将详细介绍如何使用T
- 【TVM 教程】PAPI 入门
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/性能应用程序编程接口(PerformanceApplicationProgrammingInterface,简称PAPI)是一个可在各种平台上提供性能计数器的库。在指定的运行期间,性能计数器提供处理器行为的准确底层信息,包含简单的指标,如总
- 【TVM 教程】在 TVM 中使用 Bring Your Own Datatypes
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:GusSmith,AndrewLiu本教程将展示如何利用BringYourOwnDatatypes框架在TVM中使用自定义数据类型。注意,BringYourOwnDatatypes框架目前仅处理数据类型的软件模拟版本。该框架不支持开箱
- 【TVM 教程】如何使用 TVM Pass Instrument
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:Chi-WeiWang随着实现的Pass越来越多,instrumentpass执行、分析每个Pass效果和观察各种事件也愈发重要。可以通过向tvm.transform.PassContext提供tvm.ir.instrument.Pa
- TVM Monthly - June 2021
HanBlogs
TVM深度学习推理引擎TVMTVMMonthly
TVMMonthly-June2021AsdiscussedbytheTVMPMC,ourgoalistoprovideamonthlysummaryoftheprojectsousersanddeveloperscangetabetterunderstandingofthegoings-onoftheTVMcommunity.Feedbackandsuggestionsarewelcomedso
- TVM Monthly - July 2021
HanBlogs
TVM深度学习推理引擎TVMTVMMonthly
TVMMonthly-July2021AsdiscussedbytheTVMPPMC,ourgoalistoprovideamonthlysummaryoftheprojectsousersanddeveloperscangetabetterunderstandingofthegoingsonoftheTVMcommunity.Feedbackandsuggestionsarewelcomedso
- 【TVM 教程】如何使用 TVM Pass Infra
HyperAI超神经
TVM人工智能深度学习机器学习TVM调用调用pass在线教程
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZhiChen随着Relay/tir中优化Pass数的增加,手动执行并维护它们的依赖关系变得难以处理。因此我们引入了一个基础架构来管理优化Pass,并使其适用于TVM堆栈中IR的不同层。Relay/tir程序的优化可以在各种粒度上应用
- 【TVM 教程】如何使用 TVM Pass Instrument
HyperAI超神经
TVM语言模型人工智能机器学习TVM编译框架加速芯片深度学习
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:Chi-WeiWang随着实现的Pass越来越多,instrumentpass执行、分析每个Pass效果和观察各种事件也愈发重要。可以通过向tvm.transform.PassContext提供tvm.ir.instrument.Pa
- 深度学习编译器
1)深度学习编译器复杂个JB与通用自动编译工具不同,深度学习编译器结构更加复杂,包括图层优化、张量(Tensor)优化、代码生成、硬件部署、自动调优(AutoTuning)等几个部分。以TVM为例,图1.1为TVM的结构示意图。最上层表示不同的深度学习框架,TVM将不同深度学习框架实现的算法转化为高层IR表示,高层IR以算子为原子单元,将不同类型的算法抽象成图节点对图进行融合优化。之后,TVM将高
- TensorRT × TVM 联合优化实战:多架构异构平台的统一推理加速与性能调优全流程
观熵
大模型高阶优化技术专题架构人工智能
TensorRT×TVM联合优化实战:多架构异构平台的统一推理加速与性能调优全流程关键词TensorRT、TVM、异构推理优化、跨平台部署、GPU加速、NPU融合、自动调度、深度学习推理引擎、性能调优摘要在深度学习模型推理部署场景中,面对GPU、NPU、CPU等多架构异构平台的并存,如何实现统一的高性能推理优化成为企业工程落地的关键挑战。本文聚焦TensorRT与TVM的联合优化策略,从平台结构适
- AI 编译器技术沙龙丨 AMD/北京大学/沐曦/上海创智齐聚北京,TVM/Triton/TileLang 各展所长
hyperai
在AI变革千行百业的时代,一场关于效率、可部署性与算力可持续性的技术革命正悄然发生。作为承上启下的关键中间件,AI编译器串联起了底层硬件与上层应用。无论是已在业界广泛应用的TVM,还是近年来快速崛起的Triton,亦或是今年年初才崭露头角的算子编程语言TileLang,编译技术已不仅仅是让模型「跑得起来」的基本保障,同时也正在升级为支撑「高效执行与资源利用优化」的关键技术。围绕AI编译器上下游的创
- 【TVM 教程】如何使用 TVM Pass Infra
机器学习人工智能深度学习算法
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZhiChen随着Relay/tir中优化Pass数的增加,手动执行并维护它们的依赖关系变得难以处理。因此我们引入了一个基础架构来管理优化Pass,并使其适用于TVM堆栈中IR的不同层。Relay/tir程序的优化可以在各种粒度上应用
- AFC自动售检票系统终端业务软件综合测试方案
Ray_1997
长沙地铁自动售检票系统可用性测试负载均衡程序人生交通物流经验分享
1.测试目标验证终端业务软件是否满足功能需求和性能指标。确保系统在复杂运营环境下的稳定性和可靠性。检测潜在安全漏洞,保证交易数据的安全性。提供系统的全面质量评估,支持系统上线或升级决策。2.测试范围终端类型:闸机(ES)自动售票机(TVM)客服终端(SLE)充值机(AVM)关键功能模块:刷卡验证(进站/出站/换乘)票务操作(售票、退票、充值)数据传输(设备→SC→ACC)日志记录与上传系统接口:硬
- 【TVM 教程】开发环境中加入 microTVM
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MohamadKatanbaf本教程描述了将使用microTVM编译的模型集成到自定义开发环境所需的步骤。在本教程中,我们使用STM32CubeIDE作为目标集成开发环境(IDE),但我们不依赖于此IDE的任何特定功能,将microT
- 【TVM 教程】创建使用 microTVM 的 MLPerfTiny 提交
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MehrdadHessar本教程展示了如何使用microTVM构建MLPerfTiny提交。该教程演示了从MLPerfTiny基准模型中导入一个TFLite模型,使用TVM进行编译,并生成一个可以刷写到支持Zephyr的板上的Zeph
- 【TVM 教程】使用 TVMC Micro 执行微模型
人工智能深度学习
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MehrdadHessar本教程介绍了如何为微型设备编译一个微模型,并在Zephyr平台上构建一个程序,来执行这个模型,烧录程序,并用tvmcmicro命令来执行所有模型。在进行本教程之前你需要安装python和Zephyr依赖安装m
- 【 TVM 教程】microTVM PyTorch 教程
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:MehrdadHessar该教程展示了如何使用PyTorch模型进行microTVM主机驱动的AOT编译。此教程可以在使用C运行时(CRT)的x86CPU上执行。注意:此教程仅在使用CRT的x86CPU上运行,不支持在Zephyr上运
- AI编译器对比:TVM vs MLIR vs Triton在大模型部署中的工程选择
学术猿之吻
人工智能mlir量子计算pytorch深度学习分布式
引言:大模型部署的编译器博弈随着千亿参数大模型成为常态,推理延迟优化成为系统工程的核心挑战。本文基于NVIDIAA100与GoogleTPUv4平台,通过BERT-base(110M)和GPT-2(1.5B)的实测数据,对比TVM、MLIR、Triton三大编译框架在动态shape支持、算子融合效率、内存管理等方面的工程特性,揭示不同场景下的编译策略选择规律。一、技术架构对比分析1.1TVM:分层
- PrimExpr 与 RelayExpr 的区别
胡乱儿起个名
TVMTVM编译器AI编译器人工智能
PrimExpr与RelayExpr的区别解析 在TVM的表达式系统中,PrimExpr和RelayExpr是两种不同层级的表达式类型,分别服务于TVM的不同编译阶段和目标场景。以下是它们的核心区别和关联:1.设计目标与层级特性PrimExprRelayExpr所属层级TVM底层张量表达式(TIR层)Relay前端高级计算图主要用途循环优化、硬件指令生成神经网络计算图表示抽象级别低层级(接近硬件
- TVM虚拟机
虚拟机编程语言软件开发
技术核心优势:TVM引擎支持Lisp、JavaScript、Python、Ruby、Lua、Pascal、Basic等多种语法。TVM超微型内核引擎(不足500kb),拥有几百个实用函数。内核模块非常紧凑,所需系统资源很小,因此与其他语言相比加载执行起来更加快速。TVM建立在通用的UNIX系统的C语言库函数基础上,可以运行在各种操作系统平台,如Windows,Linux,BSDs,MacOS等。T
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 【TVM 教程】使用元组输入(Tuple Inputs)进行计算和归约
编译器编程后端人工智能深度学习
ApacheTVM是一个端到端的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:ZihengJiang若要在单个循环中计算具有相同shape的多个输出,或执行多个值的归约,例如argmax。这些问题可以通过元组输入来解决。本教程介绍了TVM中元组输入的用法。from__future__importabsolut
- 【TVM教程】为 NVIDIA GPU 自动调度神经网络
HyperAI超神经
TVM神经网络人工智能深度学习TVMGPUNVIDIA语言模型
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用auto-scheduler为NVIDIAGPU调优整个神经网络。为自动调优神经网络,需要将网络划分为小的子图并独立调优。每个子图被视为
- 【TVM教程】为 x86 CPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:YaoWang,EddieYan本文介绍如何为x86CPU调优卷积神经网络。注意,本教程不会在Windows或最新版本的macOS上运行。如需运行,请将本教程的主体放在if__name__=="__main__":代码块中。impor
- TVM:设计与架构
Adenialzz
tvm模型部署架构react.js前端
TVM:设计与架构本文档适用于想要了解TVM架构和/或积极开发项目的开发人员。页面组织如下:示例编译流程概述了TVM将模型的高层描述转换为可部署模块所采取的步骤。要开始使用,请先阅读本节。逻辑架构组件部分描述了逻辑组件。后面的部分是针对每个逻辑组件的特定指南,按组件的名称组织。设备/目标交互描述了TVM如何与每种支持的物理设备和代码生成目标进行交互。请查看开发人员操作指南以获取有用的开发技巧。本指
- TVM Compiler中文教程:TVM调度原语(Schedule Primitives)
Mars_WH
TVM深度学习编译器TVM中文教程调度Schedulesplittile
文章目录TVM调度原语(SchedulePrimitives)分裂split平铺tile融合fuse重排序reorder绑定bind从哪里开始计算compute_at计算内联compute_inlinecompute_root总结TVM调度原语(SchedulePrimitives)TVM是用于高效内核代码构建的版本领域专用语言(Domain-Specialed-Language,DSL)。这篇教
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- Ubuntu交叉编译 arm板子上的TVM
陈有爱
TVMubuntu人工智能
目录X86Ubuntu的TVM安装LLVM下载tvm配置config.cmake编译源码python安装测试是否安装成功可以在安装一些库,用于RPCTracker和auto-tuning交叉编译801arm的TVM交叉编译链下载配置config.cmake编译源码编译的时候可能会遇到错误ONNX模型转换为TVM模型创建pre.py,将onnx模型编译成tvm.so文件测试TVM模型修改demo程序
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb