- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 【机器学习与数据挖掘实战 | 医疗】案例16:基于K-Means聚类的医疗保险的欺诈发现
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘kmeans聚类python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 【机器学习与数据挖掘实战】案例15:基于LDA模型的电商产品评论数据情感分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘人工智能LDA主题模型情感分析文本分析python
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 【机器学习与数据挖掘实战】案例14:基于随机森林分类器的汽车公司客户细分预测
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘随机森林人工智能分类算法
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 机器学习与数据挖掘:决策树(知识点总结)
KE.WINE
机器学习机器学习数据挖掘决策树
决策树叶节点对应于决策结果,内部节点表示一个特征或属性。基本流程决策树算法递归返回的三个条件:当前结点包含的样本全属于同一类别,无需划分;当前属性集为空,或是所有样本在所有属性上取值相同,无法划分;*将当前节点标记为叶节点,将其类别设定为该节点所含样本最多的类别;当前结点包含的样本集合为空,不能划分;*将当前节点标记为叶节点,将其类别设定其父节点所含样本最多的类别;划分选择决策树学习算法包括3部分
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 《机器学习与数据挖掘》学习笔记(二)-续
产品扫地僧
沿着PAC学习理论,讨论有限假设空间的样本复杂度,并用Hoeffding不等式来界定概率边界。假设空间的样本复杂度PAC可学习性很大程度上由所需的训练样本数量决定。随着问题规模的增长所带来的所需训练样本的增长称为学习问题的样本复杂度(samplecomplexity)。在多数实际问题中,最限制学习器成功的因素是有限的可用的训练数据。我们通常都喜欢能与训练数据拟合程度更高的假设,当一个学习器在可能时
- 牛人(周志华)推荐的人工智能网站
城市中迷途小书童
AIURLs(maintainedbyZhi-HuaZhou)**北京大学视觉与听觉信息处理实验室北京邮电大学模式识别与智能系统学科复旦大学智能信息处理开放实验室IEEEComputerSociety北京映象站点计算机科学论坛机器人足球赛模式识别国家重点实验室南京航空航天大学模式识别与神经计算实验室-PARNEC南京大学机器学习与数据挖掘研究所-LAMDA南京大学人工智能实验室南京大学软件新技术国
- 1.5 The Leaming Problem-Machine Leaming and other Fields|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-06-27学习链接:1.5TheLeamingProblem-MachineLeamingandotherFields1.MachineLearningandDataMining(机器学习与数据挖掘)讲完了机器学习完整的流程,下面将一下机器学习与其他相关领域的关系第一个讲的领域就是数据挖掘,数据挖掘与机器学习有什么不一样,如下:机器学习是用资料找出一个假说g,然后跟我
- 毕业设计选题 - 计算机毕业设计(论文)选题合集
weixin_55149953
毕业设计人工智能毕业设计毕设目标跟踪计算机视觉大数据算法
目录前言选题背景意义毕业设计选题深度学习与神经网络计算机视觉与图像处理机器学习与数据挖掘数据分析和大数据处理选题迷茫选题的重要性更多选题指导最后前言大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。大四的同学马上要开始毕业设计,对选题有疑问可以问学长哦!以下整理了适合不同方向的计算机专业的毕业设计选题对毕设有任何疑问
- DataFunSummit:2023年数据科学在线峰会-核心PPT资料下载
百家峰会
大数据数据治理数据科学大数据数据科学数据治理
一、峰会简介数据会说谎?如何正确的挖掘并使用数据?前沿的科学实验如何做?实验又是如何欺骗你的?数据中台如何发挥功效?用户增长有捷径吗?数据科学的最佳实践有哪些?本次峰会共包含了:机器学习与数据挖掘、AB实验、因果推断、数据中台与数字化转型、用户增长与运营、数据科学最佳实践等6大论坛。机器学习与数据挖掘方向的核心目标是通过机器学习的建模方式解决人与物的匹配问题,以及通过对人行为数据的建模或挖掘研究,
- 【机器学习】学习笔记01-概论
NRbene
机器学习机器学习学习数据挖掘
机器学习简介文章目录机器学习简介机器学习辨析深度学习与机器学习机器学习与数据挖掘机器学习与统计学习机器学习与传统编程机器学习概念适用条件挑战模型的稳定性模型的可解释性历史符号主义贝叶斯学派连接主义其他概念基本概念三要素模型策略算法归纳偏好证明机器学习的目标欠拟合和过拟合泛化误差(重点)缓解过拟合深入理解泛化误差基本概念方法总结机器学习一般流程机器学习分类按有无标签分类按输出空间分类按模型分类按算法
- 《机器学习与数据挖掘》学习笔记(一)
产品扫地僧
从刚注册时强迫自己写文章时的拖延,到现在有了想法不自觉的想记录下来,是好的转变。最近开始对数据挖掘很感兴趣,在网易公开课上开始学加州理工的《机器学习和数据挖掘》,还可以顺便练练英语听力。第一课《学习问题》只要从问题引入,介绍什么是机器学习,以及常见的学习分类。在人类的认知中一些显而易见的结论,对机器而言是一个却是无限靠近的过程,比如婴儿可以快速识别一张脸的情绪等。课中介绍了银行信贷审批的例子。阐述
- 机器学习与数据挖掘第三、四周
Joy T
机器学习数据挖掘人工智能机器学习
为什么第二周没有呢……因为刚换老师,自学要适应一段时间。本课程作者之后的学习目标是:实操代码,至少要将作者参加数学建模中用到的数据处理方法都做一遍。首先,作者复习一下李宏毅老师的两节课程。机器学习概述机器学习就是让机器帮我们找一个函数!而这个函式,其实就是类神经网络!这个函式的输入可以是向量、矩阵和序列。矩阵往往用于表示图像。语音往往可以被表示为序列。输出可以是数值regression、类别cla
- 数分面试题1-牛客
海星?海欣!
面试问题python数据分析
1、python中你常用的包包名+作用+哪里使用过numpy:主要用来做多维数组的运算,高效的数值计算与数组操作,之前在推荐系统的项目中使用过pandas:用于数据处理与分析,提供了灵活的数据结构与数据操作功能matplotlib:数据可视化,比如想看数据的分布情况-箱线图,还有热力图、直方图、面积图、雷达图、极坐标图、等高线图等sklearn:用于机器学习与数据挖掘项目,提供多种机器学习算法与工
- 【AI】机器学习——绪论
AmosTian
AI#机器学习人工智能机器学习AI
文章目录1.1机器学习概念1.1.1定义统计机器学习与数据挖掘区别机器学习前提1.1.2术语1.1.3特点以数据为研究对象目标方法——基于数据构建模型SML三要素SML步骤1.2分类1.2.1参数化/非参数化方法1.2.2按算法分类1.2.3按模型分类概率模型非概率模型逻辑斯蒂回归1.2.4基本分类监督学习分类符号表示形式化特征无监督模型特征符号表示形式化强化学习半监督学习主动学习1.2.5按技巧
- 加州理工学院公开课:机器学习与数据挖掘_Epilogue(第十八课-终结篇)
飞天狐213
机器学习机器学习Aggregation贝叶斯
课程简介:这是该课程的最后一课,作者首先总结了有关机器学习的理论、方法、模型、范式等。最后介绍了贝叶斯理论和Aggregation(聚合)方法在机器学习中的应用。课程提纲:1、机器学习的地图。2、贝叶斯理论。3、Aggregation(聚合)。1、机器学习的地图有关机器学习的方法、模型等非常多,简直令人目不暇接。比如下图列出来的。然而不建议一一学习这些方法、模型,否则容易迷失在这些方法里无法自拔。
- 大咖观点| AIGC与因果推断的双向赋能
九章云极DataCanvas
AIGC人工智能大数据
近日,由DataFun主办的第三届数据科学在线峰会盛大举办。聚焦机器学习与数据挖掘、AB实验、因果推断、数据中台与数字化转型、用户增长与运营、数据科学最佳实践等6大数据科学主题,数十位国内外一线数据科学家围绕数据科学前沿技术成果和应用实践经验深入分享和交流。九章云极DataCanvas公司深度参与峰会,并分享前沿数据科学技术的最新研究进展。峰会上,九章云极DataCanvas公司AI架构师何刚发表
- Python机器学习及实践_从零开始通往KAGGLE竞赛之路PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书
胡萝卜须_aee2
点击获取提取码:i5nwimage.pngPython机器学习及实践面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下流行的机器学习、数据挖掘与自然语言处理工具,如Scikit-learn、NLTK、Pandas、gensim、XGBoost、GoogleTensorflow等。全书
- 大咖观点| AIGC与因果推断的双向赋能
aigc
近日,由DataFun主办的第三届数据科学在线峰会盛大举办。聚焦机器学习与数据挖掘、AB实验、因果推断、数据中台与数字化转型、用户增长与运营、数据科学最佳实践等6大数据科学主题,数十位国内外一线数据科学家围绕数据科学前沿技术成果和应用实践经验深入分享和交流。九章云极DataCanvas公司深度参与峰会,并分享前沿数据科学技术的最新研究进展。峰会上,九章云极DataCanvas公司AI架构师何刚发表
- 机器学习与数据挖掘的学习路线图
thousand_
https://my.oschina.net/siiiso/blog/810554正式学习之前,你所需要的预备知识(主要是数学)应该包括:微积分(偏导数、梯度等等)、概率论与数理统计(例如极大似然估计、中央极限定理、大数法则等等)、最优化方法(比如梯度下降、牛顿-拉普什方法、变分法(欧拉-拉格朗日方程)、凸优化等等)——如果你对其中的某些名词感到陌生,那么就说明你尚不具备深入开展数据挖掘算法学习的
- 通关秘籍!Pandas最新官方教程中文版
Python数据之道
大家好,感谢大家一路以来的关注和支持,今天给大家强烈推荐我的好友云朵君的公众号『数据STUDIO』,强烈推荐大家关注~☠️宝藏级☠️原创公众号『数据STUDIO』内容超级硬核。公众号以Python为核心语言,垂直于数据科学领域,包括可戳Python|MySQL|数据分析|数据可视化|机器学习与数据挖掘|爬虫等,从入门到进阶!云朵君为大家整理和筛选了大量火爆全网的Python数据科学学习资料,全
- 机器学习(面试题)及知识点
菜田的守望者
机器学习机器学习面试题
文章目录文章目录文章目录1,什么是机器学习2,机器学习与数据挖掘的区别3.什么是机器学习的过度拟合现象4.过度拟合产生的原因5.如何避免过度拟合6.什么是感应式的机器学习?7.什么是机器学习的五个流行的算法?9.在机器学习中,建立假设或者模型的三个阶段指的是什么?10.什么是监督学习的标准方法?11.什么是训练数据集和测试数据集?12.机器学习的方法?13.非机器学习有哪些类型?14.什么是非监督
- python语法基础知识案例_Python 语法速览与实战清单
weixin_39860064
python语法基础知识案例
本文是对于现代Python开发:语法基础与工程实践的总结,更多Python相关资料参考Python学习与实践资料索引;本文参考了PythonCrashCourse-CheatSheets,pysheeet等。本文仅包含笔者在日常工作中经常使用的,并且认为较为关键的知识点与语法,如果想要进一步学习Python相关内容或者对于机器学习与数据挖掘方向感兴趣,可以参考程序猿的数据科学与机器学习实战手册。基
- if i have five million dollars
云想飘飘
假如我有五百万我首先要还清我的房贷然后买辆车然后在村里盖个舒服的房子给父母然后想不到了抽个时间去考个机器学习与数据挖掘研究生然后努力工作。。。。
- python竞赛之路_Python机器学习及实践:从零开始通往Kaggle竞赛之路 PDF高清完整版...
weixin_39900468
python竞赛之路
Python机器学习及实践:从零开始通往Kaggle竞赛之路PDF高清完整版作者:范淼/李超出版社:清华大学出版社副标题:从零开始通往Kaggle竞赛之路出版年:2016-10-1定价:49元装帧:平装ISBN:9787302442875内容简介······本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,
- Python机器学习及实践+从零开始通往Kaggle竞赛之路
喜欢安静的程序猿
python经典书籍
内容简介本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习、数据挖掘与自然语言处理工具,如Scikitlearn、NLTK、Pandas、gensim、XGBoost、GoogleTensorflow等。全书共分4章。第1章简介篇,介绍机器学习概念与Python
- 机器学习与数据挖掘,机器学习算法简介
明月说数据
数据挖掘算法大数据
什么是数据挖掘数据挖掘就是从大量的数据中去发现有用的信息,然后根据这些信息来辅助决策。听起来是不是跟传统的数据分析很像呢?实际上,数据挖掘就是智能化的数据分析,它们的目标都是一样的。但是,又有很大的区别。传统的数据分析和数据挖掘最主要的区别就是在揭示数据之间的关系上。传统的数据分析揭示的是已知的、过去的数据关系,数据挖掘揭示的是未知的、将来的数据关系。它们采用的技术也不一样,传统的数据分析采用计算
- 机器学习算法之LightGBM
The king always the king
机器学习
LightGBM在很多方面会比XGBoost表现的更为优秀。它有以下优势:更快的训练效率低内存使用更高的准确率支持并行化学习可处理大规模数据支持直接使用category特征从下图实验数据可以看出,LightGBM比XGBoost快将近10倍,内存占用率大约为XGBoost的1/6,并且准确率也有提升。LightGBM的应用LightGBM在机器学习与数据挖掘领域有着极为广泛的应用。据统计Light
- 机器学习第一章(引言)
罗辑罗辑
机器学习
“假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则意味着关于T和P,该程序对E进行了学习”机器学习致力于研究如何通过计算的手段,利用经验来改善系统自身的性能,从而在计算机上从数据中产生“模型”,依此来对新的未知的情况进行判断。机器学习与数据挖掘的关系:图1.机器学习与数据挖掘的关系机器学习中的基本术语:数据、任务、泛化能力机器学习中的假设空间、归
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round