- python学智能算法(二十四)|SVM-最优化几何距离的理解
引言前序学习过程中,已经对几何距离的概念有了认知,学习链接为:几何距离这里先来回忆几何距离δ的定义:δ=mini=1...myi(w∥w∥⋅xi+b∥w∥)\delta=\min_{i=1...m}y_{i}(\frac{w}{\left\|w\right\|}\cdotx_{i}+\frac{b}{\left\|w\right\|})δ=i=1...mminyi(∥w∥w⋅xi+∥w∥b)对上
- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 集训DAY7之线性dp与前缀优化/stl优化
心之所向凉月空
c++开发语言数据结构算法
集训DAY7之线性DP与前缀优化/STL优化目录DP的概念与思想核心DP的题目类型线性DP详解DP的优化策略后记DP的概念与思想核心DP的定义DP也就是动态规划(DynamicProgramming)是求解决策过程最优化的过程动态规划主要用于求解以时间划分阶段的动态过程的优化问题DP的基本思想动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中我们常常需要在多个可行解中寻找最优解,其基本思
- 【动态规划】一次性整理子序列问题题型系列,八个例题实战详细解析 (包含我自己精心整理的动态规划解题思路)
ngioig
动态规划leetcode算法职场和发展后端
前言最近刷了子序列系列的题型,一共八个力扣题,这里对子序列问题进行一个简单的总结,全是动态规划的解法,当然里边有些题选有更优的解法。1.动态规划解题思路动态规划(DynamicProgramming,DP)是一种在计算机科学和数学中用于解决最优化问题的方法。它特别适用于可以分解为互相重叠的子问题的问题,并且这些子问题的解可以被存储起来以避免重复计算,从而提高效率。首先,我们要熟悉动态规划的套路也要
- 【学习】《算法图解》第十一章学习笔记:动态规划
程序员
一、动态规划概述动态规划(DynamicProgramming,简称DP)是一种通过将复杂问题分解为更简单的子问题来解决问题的方法。它是一种强大的算法设计技术,特别适用于具有重叠子问题和最优子结构性质的问题。(一)算法适用场景动态规划主要适用于以下场景:最优化问题(求最大值、最小值)计数问题(求方案数)具有重叠子问题特性的问题具有最优子结构特性的问题(二)算法基本思想动态规划的核心思想是:将原问题
- 【学习】《算法图解》第十章学习笔记:贪婪算法
程序员
一、贪婪算法概述贪婪算法(GreedyAlgorithm)是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。贪婪算法不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择。(一)算法适用场景贪婪算法适用于具有"贪心选择性质"的问题,即局部最优选择能导致全局最优解的问题。主要应用于:需要求解最优化问题问题具有贪心选择性质问题具有最优子结构性质(二
- 算法导论:动态规划-钢条切割
tttoff
算法动态规划
一、动态规划定义区别于分治法,动态规划(dynamicprogramming)的子问题是有重叠的。常用于最优化问题(optimizationproblem)。二、钢条切割问题2.1步骤分解(1)刻画最优解的结构特征如何得到最大的收益->切割or不切割->则最大收益可以由两个子方案组成,即最大收益=max(不切割的收益,切割的收益)(2)递归地定义最优解的值不切割的收益的已知,则需定义切割的收益。由
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- 50行matlab算法,一个用matlab实现的50行的实数染色体遗传算法程序 - 计算模拟 - 小木虫 - 学术 科研 互动社区...
kotlit
50行matlab算法
【本文属作者原创,但已发表于科学网(链接地址:http://blog.sciencenet.cn/blog-3102863-1029280.html),现稍作格式上的修该后转载,并发金币祝大家新年快乐!】1.引言遗传算法(geneticalgorithms)是一种很有意思最优化方法,常用于解决一些传统方法力所不及的多变量最优化问题。这种方法很通用,即用同样的思想可以解决很多不同的问题。只要你能对问
- c++的内联函数
z_muyangren
c/c++编程
一、内联函数的利弊利:1、不需要蒙受函数调用所带来的额外开销。2、编译器最优化机制通常被设计用来浓缩那些“不含函数调用”的代码,当inline某个函数时,编译器就可以对它执行语境相关最优化。弊:1、inline函数的整体观念是,将“对函数的每一次调用”都以函数本体替换之,这样会增加目标码大小。2、inline造成的代码膨胀会导致额外的换页行为,降低指令高速缓存装置的命中率,以及伴随这些而来的效率损
- U-Mail邮件系统的安全性和可扩展性
U-Mail邮件系统
邮件系统安全
在当今数字化时代,电子邮件作为一种一种便捷、高效的通讯工具,为个人和企业提供了跨越地域和时差的交流方式,几乎成为我们生活中不可或缺的一部分。U-Mail邮件系统作为一个国产、高效的邮件系统,由于其安全、稳定、易于配置和维护的特点,在邮件服务市场上占据了重要的地位。U-Mail邮件系统是由深圳市福洽科技有限公司开发,设计上遵循了“集中管控、自动化、智能化、最简化、最优化”的原则,采用模块化设计,前端
- 动态规划算法精要与实战技巧
mikes zhang
算法动态规划
动态规划算法深度解析与应用实践一、算法概述动态规划(DynamicProgramming,DP)作为解决复杂决策问题的核心方法,在计算机科学领域已发展超过半个世纪。该算法通过RichardBellman在1953年提出的最优化原理,成功解决了多阶段决策过程中的效率问题。根据ACM最新统计,动态规划在算法竞赛中的使用频率高达32%,位列Top5常用算法之首。本算法主要适用于具有以下特征的问题:最优子
- 状态压缩动态规划:用二进制“魔法”破解组合难题
矢鱼
动态规划算法状态dpc++开发语言
在算法的世界里,动态规划(DP)一直是解决最优化问题的利器。而状态压缩动态规划(StateCompressionDP),作为动态规划的进阶技巧,更是以其独特的“二进制魔法”,为处理组合优化问题开辟了一条高效之路。本文将带你深入探索状态压缩DP的奥秘,结合经典案例与代码实现,揭开它神秘的面纱。一、什么是状态压缩动态规划?动态规划的核心在于将问题分解为子问题,并通过记录子问题的解来避免重复计算。而状态
- (秋招复习)自动驾驶与机器人中的SLAM技术(一)
什么都不会的小澎友
SLAM秋招复习自动驾驶SLAM秋招
秋招复习之--自动驾驶与机器人中的SLAM技术1前言第一章自动驾驶基础知识第二章基础数学知识回顾旋转的表示SO(3)的BCH近似运动学表示线速度与加速度的处理一些常见的雅可比滤波器和最优化理论第三章惯性导航与组合导航IMU系统运动学IMU航迹推算卫星导航基于ESKF的简单组合导航速度观测量第四章预积分什么是预积分预积分的测量模型噪声是干什么的?噪声模型!零偏怎么更新图优化模型怎么建总结前言不知不觉
- 算法设计:分支限界法的基础原理与应用
古月฿
算法设计与分析算法算法设计与分析分支限界法
目录分支限界法概述与回溯法的区别基本思想常见类型限界函数的构造分支限界法的应用1.单源最短路径问题2.0/1背包问题3.旅行商问题4.指派问题5.批处理作业问题优先级的确定与LC检索博弈搜索总结在计算机科学的算法设计与分析领域,分支限界法作为一种强大的工具,在解决各种最优化问题中发挥着关键作用。它为众多复杂问题提供了有效的求解思路,能够在合理的时间内找到问题的最优解。本文将深入探讨分支限界法的基本
- Python数据结构与算法(5)——动态规划
盼小辉丶
Python数据结构与算法python动态规划开发语言
Python数据结构与算法(5)——动态规划0.学习目标1.动态规划的基本概念1.1什么是动态规划1.2动态规划的核心思想1.3动态规划的适用条件2.动态规划的实现思路2.1自顶向下:备忘录法(Memoization)2.2自底向上:表格法(Tabulation)3.0/1背包问题4.最长公共子序列5.硬币找零问题小结0.学习目标动态规划(DynamicProgramming,DP)是解决最优化问
- 大模型部署工具 llama.cpp 介绍与安装使用_看完这篇就够了
大模型
llama微信人工智能学习agi产品经理
1.大模型部署工具llama.cpp大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp(https://github.com/ggerganov/llama.cpp)主要解决的是推理过程中的性能问题。主要有两点优化:llama.cp
- 模拟退火,百炼成钢
CIb0la
方法论生活学习程序人生
我是学专业数学出身,数学里有一个课程叫做最优化求解。英文是Optimization,中文直翻是最优化。一般是设置一个初始条件,然后在一个连续函数上找到符合条件的最大值或者最小值,通常在数学上叫做最优解。有时候,初始条件本身并不收窄,甚至就是一个函数范围,这会导致解有也不确定,变为一个范围或者说是有一个方程解。这时候的解被称作容许集。对于无约束的优化问题,如果函数是二次可微的话,那么可以通过找到目标
- 每天五分钟机器学习:支持向量机数学基础之超平面分离定理
每天五分钟玩转人工智能
每天五分钟玩转机器学习算法支持向量机机器学习人工智能超平面分离定理深度学习神经网络
本文重点超平面分离定理(SeparatingHyperplaneTheorem)是数学和机器学习领域中的一个重要概念,特别是在凸集理论和最优化理论中有着广泛的应用。该定理表明,在特定的条件下,两个不相交的凸集总可以用一个超平面进行分离。定义与表述超平面分离定理(SeparatingHyperplaneTheorem)又称凸集分离定理,其表述如下:定义:若C和D为非空凸集,且C∩D=∅,则存在非零向
- 经济金融最优化:从理论到MATLAB实践——最大利润问题全解析
青橘MATLAB学习
Matlab数学建模编程实验金融matlab最大利润问题
内容摘要本文聚焦经济金融领域的最大利润问题,深入探讨不考虑销售影响和考虑销售影响两种情形下的利润最大化模型柯布-道格拉斯生产函数等理论构建与求解。关键词:经济金融;最大利润问题;柯布-道格拉斯生产函数1.引言在经济金融领域,企业的核心目标之一便是追求利润最大化。而实现这一目标,需要对生产、销售等多个环节进行深入分析与优化决策。2.不考虑销售影响的最大利润问题2.1理论基础在不考虑销售因素时,假设厂
- NO.73十六届蓝桥杯备战|搜索算法-剪枝与优化-记忆化搜索|数的划分|小猫爬山|斐波那契数|Function|天下第一|滑雪(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯剪枝c++
剪枝与优化剪枝,形象得看,就是剪掉搜索树的分⽀,从⽽减⼩搜索树的规模,排除掉搜索树中没有必要的分⽀,优化时间复杂度。在深度优先遍历中,有⼏种常⻅的剪枝⽅法排除等效冗余如果在搜索过程中,通过某⼀个节点往下的若⼲分⽀中,存在最终结果等效的分⽀,那么就只需要搜索其中⼀条分⽀。可⾏性剪枝如果在搜索过程中,发现有⼀条分⽀是⽆论如何都拿不到最终解,此时就可以放弃这个分⽀,转⽽搜索其它的分⽀。最优性剪枝在最优化
- 蓝桥杯常用算法介绍:动态规划(DP)
启诚科技
算法蓝桥杯动态规划
蓝桥杯快到了,很多小伙伴私信小编,想让我介绍一些基础的算法,那么今天它来了!动态规划是一种通过将复杂问题分解为重叠子问题,并记录子问题解来避免重复计算的方法。其核心是状态定义和状态转移方程。在竞赛中,DP常用于解决最优化问题(如最大值、最小值)或计数问题(如路径总数)。典型的应用场景包括背包问题、最长子序列、路径规划等。洛谷题目推荐:P1048[NOIP2005普及组]采药题目链接:P1048采药
- 最优化方法(3):线性规划基本理论
♚放晴♛~
算法
系列笔记是本人在上最优化方法时整理的,参考书籍为经典的NumericalOptimization(SecondEdition)。笔记主要分为0~5共六个部分,包括优化基础、线搜索、带约束优化基础、线性规划、对偶理论、带约束凸优化算法,以及一些零散的部分。这里是第三部分,也就是线性规划基本理论。线性规划基本理论线性规划标准形式与转化线性规划问题有着如下形式:mincTxs.t.aiTx≤bi,i=
- 机器学习训练算法十(列文伯格-马夸尔特法(LM 法))
黎明鱼儿
算法机器学习matlab机器学习算法matlab
连续函数的最优化方法-LM法1、介绍2、数学原理3、阻尼因子更新策略4、列文伯格方法5、马夸尔特方法6、Matlab程序1、介绍列文伯格(1944)和马夸尔特(1963)先后对高斯牛顿法进行了改进,求解过程中引入了阻尼因子。将公式36的无约束最小二乘问题转变为公式44有约束最小二乘问题,其中,12×(∥DΔXk∥2−μ)⩽0\frac{1}{2}\times(\begin{Vmatrix}D\De
- K8s负载均衡全解析:从入门到实战的完整指南
ivwdcwso
运维与云原生kubernetes负载均衡容器云原生IngressService
Kubernetes(K8s)作为容器编排的标准,其负载均衡机制是构建高可用、高弹性应用的关键。本文将全面介绍K8s负载均衡的核心概念、实现方式及最佳实践,帮助开发者和运维人员构建稳定高效的云原生应用。一、K8s负载均衡的基础概念在Kubernetes生态系统中,负载均衡是指将工作负载分布到多个计算资源上的过程,以实现资源的最优化利用、最大化吞吐量、最小化响应时间并避免任何单一资源过载。1.1K8
- 【信奥一本通提高篇】基础算法之贪心算法
C-DHEnry
信奥一本通提高篇算法贪心算法
原文https://bbs.fmcraft.top/blog/index.php/archives/22/贪心算法概述近年来的信息学竞赛试题,经常出现求一个问题的可行解或最优解的题目。这类问题就是我们通常所说的最优化问题。贪心算法是求解这类问题的一种常用算法。在众多的算法中,贪心算法可以算得上是最接近人们日常思维的一种算法,常被信息学奥赛选手用来求解一些数据规模很大的问题。一、贪心算法贪心算法是从
- Deepseek给遥感人的学习与职业发展建议
Python与遥感
学习
Deepseek给遥感人的学习与职业发展建议一、夯实四大基础支柱物理基础深入理解电磁波谱特性(可见光/红外/微波)、大气传输模型、辐射定标原理;掌握不同传感器(光学/SAR/LiDAR)的成像机理与数据特性差异;推荐学习:《遥感物理与定量反演基础》。数学工具矩阵运算(影像处理核心)、傅里叶变换(SAR处理)、概率统计(分类算法);掌握数值分析、最优化理论(用于反演算法);实践推荐:用Python实
- Python贪心算法详解:如何解决最优组合问题
追逐程序梦想者
python贪心算法开发语言点云处理
Python贪心算法详解:如何解决最优组合问题贪心算法是一种求解最优化问题的经典算法,其基本思想是在每一个阶段选择最优的策略,从而得到全局最优解。在实际应用中,贪心算法适用于一些特殊类型的问题,如背包问题、最小生成树问题、任务调度问题等。Python作为一门高级编程语言,具有简洁、易用、高效等特点,在实现贪心算法时也非常方便。下面将通过具体例子来讲解如何使用Python来实现贪心算法,以解决最优组
- python 经典算法之--动态规划算法(Dynamic Programming Algorithm)
魔都霸王东
Python经典算法算法python动态规划
动态规划(DynamicProgramming,简称DP)是一种算法思想,它是求解一类最优化问题的有效工具。它通过将原问题分解为若干子问题,逐个求解子问题的最优解,从而得到原问题的最优解。动态规划算法的核心思想是“最优子结构”和“重叠子问题”。最优子结构:指问题的最优解由其子问题的最优解组合而成。重叠子问题:指在问题分解过程中,许多子问题的解是重复的。动态规划算法的基本步骤:确定状态:将原问题分解
- Leetcode-100 贪心算法
LuckyAnJo
leetcodeleetcode贪心算法算法
贪心算法简介贪心算法(GreedyAlgorithm)是一种常见的优化算法,用于解决最优化问题。该算法的核心思想是每次选择当前情况下的最优解,并期望通过这些局部最优解得到全局最优解。贪心算法通常用于那些可以分解为若干个子问题,且每个子问题的最优解可以合成全局最优解的问题。贪心算法之所以有用,是因为它可以快速地做出决策,并能在某些问题上实现较高的效率,避免了回溯与暴力解法的复杂度。贪心算法思想贪心算
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比