- 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
由数入道
人工智能剪枝人工智能算法模型压缩量化知识蒸馏二值化
一、量化(Quantization)量化的目标在于将原始以32位浮点数表示的模型参数和中间激活,转换为低精度(如FP16、INT8、甚至更低位宽)的数值表示,从而在减少模型存储占用和内存带宽的同时,加速推理运算,特别适用于移动、嵌入式和边缘计算场景。1.1概念与目标基本思想将高精度数值离散化为低精度表示。例如,将FP32权重转换为INT8,可降低内存需求约4倍,同时在支持低精度运算的硬件上加速计算
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- LiteCoT:难度感知的推理链压缩与高效蒸馏框架
大千AI助手
人工智能#Prompt#OTHER深度学习人工智能机器学习自然语言处理提示词LiteCoT思维链
“以智能裁剪对抗冗余,让推理效率与精度兼得”LiteCoT是由香港科技大学(广州)联合独立研究者团队提出的创新方法,旨在解决大模型知识蒸馏中推理链过度冗长和缺乏难度适应性的核心问题。该方法通过难度感知提示(DAP)动态生成精简的推理链,显著提升小模型推理效率与准确性。相关论文发表于arXiv预印本平台(2025年),为当前大模型轻量化部署的前沿方案。本文由「大千AI助手」原创发布,专注用真话讲AI
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- 知识蒸馏:模型压缩与知识迁移的核心引擎
大千AI助手
人工智能Python#OTHERtransformer人工智能神经网络深度学习知识蒸馏KD蒸馏
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从软目标迁移到无数据合成的轻量化革命一、核心定义与技术价值知识蒸馏(KnowledgeDistillation,KD)是一种通过迁移大型教师模型(Teacher)的知识至小型学生模型(Student)的模型压缩技术。其核心思想是:学生模型不仅学习原始数
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 嵌入式AI模型压缩技术:让大模型变小
AI智能探索者
AIAgent智能体开发实战人工智能ai
嵌入式AI模型压缩技术:让大模型变小关键词:嵌入式AI、模型压缩、剪枝、量化、知识蒸馏、轻量化网络、端侧部署摘要:当我们用手机拍照时,AI能瞬间识别出“这是一只猫”;智能摄像头能在0.1秒内检测到“有人闯入”。这些“快如闪电”的AI功能背后,藏着一项关键技术——嵌入式AI模型压缩。本文将用“给盆栽修剪枝叶”“用简笔画代替油画”等生活类比,带您一步步理解模型压缩的核心技术(剪枝、量化、知识蒸馏、轻量
- 大模型·知识蒸馏·学习笔记
小先生00101
笔记人工智能神经网络机器学习自然语言处理深度学习语言模型
第一部分:核心概念入门1.1什么是知识蒸馏?核心问题:深度学习模型(如大型神经网络)虽然性能强大,但其巨大的参数量和计算需求使其难以部署到手机、嵌入式设备等资源受限的平台。核心思想:知识蒸馏是一种模型压缩和优化的技术,其灵感来源于“教师-学生”范式。我们先训练一个复杂但性能强大的“教师模型”,然后利用这个教师模型来指导一个轻量级的“学生模型”进行学习。生动的比喻(Hinton,2015):这个过程
- 教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践
观熵
人工智能DeepSeek私有化部署
教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践关键词:私有化部署、知识蒸馏、教师模型、学生模型、协同蒸馏、蒸馏训练、边缘部署、模型压缩、国产大模型、自监督微调摘要:随着国产大模型在企业私有化环境中的广泛部署,模型的压缩与推理性能优化成为核心挑战之一。本文聚焦“教师-学生协同知识蒸馏机制”在私有化系统中的实际融合路径,系统分析从教师模型选择、蒸馏数据构建、协同训练框
- 大模型驱动核工业智能化的技术架构与核心突破
Deepoch
人工智能创业创新语言模型
从数据闭环到自主决策,解码核能系统的AI技术演进路径Deepoc大模型通过构建多维度技术体系,在知识结构化处理、逻辑推理优化及多模态验证机制等方向取得关键技术突破,有效提升生成内容与行业知识库的匹配度。经第三方测试验证,在装备制造、能源管理等场景中,其生成内容的可验证性指标较基线模型提升62%,关键参数失真率控制在0.3%阈值内。通过构建行业知识蒸馏框架,该模型已形成覆盖12个垂直领域的定制化解决
- 深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
king of code porter
深度学习深度学习剪枝人工智能
一、引言在深度学习中,我们训练出的神经网络往往非常庞大(比如像ResNet、YOLOv8、VisionTransformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄像头、机器人等资源受限的设备上。于是我们就想出了一个办法:给模型“瘦身”,让它又快又轻,还能保持不错的准确率。这就是——模型压缩!模型压缩有三种最常用的方法:模型剪枝模型量化知识蒸馏下面我们分别来通
- 【深度学习解惑】结合神经网络结构剪枝或知识蒸馏,能否把 Inception 精剪到 mobile‑friendly 仍保持精度?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习神经网络剪枝人工智能Inception机器学习googlenet
Inception系列模型移动端压缩研究报告摘要Inception系列卷积神经网络(如GoogLeNet/Inceptionv1、v3等)通过模型剪枝和知识蒸馏等压缩技术可以显著减小模型规模,使其更适合移动端部署,同时保持较高的推理准确率。研究表明,大型Inception模型经过结构化剪枝可在参数量减少约10倍的情况下仅造成很小的精度下降;例如,Inception-v3模型即使剪除87.5%的权重
- 什么是知识蒸馏?如何做模型蒸馏?结合案例说明
一、什么是蒸馏?核心概念:在机器学习中,“蒸馏”指的是知识蒸馏。这是一种模型压缩技术,其核心思想是将一个大型、复杂、性能优越但计算成本高的模型(称为“教师模型”)所蕴含的“知识”或“智慧”,转移给一个小型、简单、计算效率高的模型(称为“学生模型”)。类比:就像化学中的蒸馏过程,通过加热和冷凝分离混合物中的组分,知识蒸馏试图从复杂教师模型的“知识混合物”中,提取出最精华、最核心的模式和关系,并将其“
- AI持续学习模型压缩与加速方法大全
AI智能探索者
人工智能学习ai
AI持续学习模型压缩与加速方法大全关键词:模型压缩、模型加速、持续学习、知识蒸馏、模型剪枝、量化、轻量化架构摘要:本文全面解析AI持续学习场景下的模型压缩与加速技术。从核心概念到具体方法,结合生活案例、代码示例与实战场景,系统讲解剪枝、量化、知识蒸馏等主流技术的原理与应用,帮助读者理解如何在持续学习中平衡模型性能与资源消耗,最终实现高效、可扩展的AI系统。背景介绍目的和范围随着AI技术普及,模型规
- DeepSeek赋能数据治理解决方案
公众号:优享智库
DEEPSEEKAI人工智能流程管理战略管理人力资源财务管理数字化转型数据治理主数据数据仓库人工智能大数据系统架构架构
方案通过DeepSeek的核心技术能力,旨在解决企业数据治理中的痛点问题,提升数据质量、优化数据管理流程,并支持企业的数字化转型和信创化发展。DeepSeek技术架构解析混合专家模型(MoE)创新:动态专家路由:通过门控网络实现专家动态选择,提升推理效率。分层专家专业化:底层专家专注语法/词法处理,中层专家处理语义理解,高层专家负责逻辑推理。跨专家知识蒸馏:通过教师-学生框架将不同领域专家的知识迁
- YOLOv5改进系列(二十五) 知识蒸馏理论与实践
小酒馆燃着灯
YOLO深度学习人工智能
文章目录知识蒸馏基础原理精讲1.什么是知识蒸馏?2.轻量化网络的方式有哪些?3.为什么要进行知识蒸馏?3.1提升模型精度3.2降低模型时延,压缩网络参数3.3标签之间的域迁移4.知识蒸馏的理论依据?5.知识蒸馏分类5.1目标蒸馏-Logits方法5.2特征蒸馏方法6.知识蒸馏的过程6.1升温(T)操作6.2温度(T)特点7.蒸馏损失计算过程8.知识蒸馏在NLP/CV中的应用8.1目标蒸馏-Logi
- 大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战
layneyao
aillama人工智能
大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战摘要引言一、轻量化技术路径对比1.参数剪枝:移除冗余连接2.知识蒸馏:教师-学生模型迁移3.量化压缩:精度与性能的平衡4.结构优化:轻量级架构设计二、框架与硬件协
- 知识蒸馏在小样本学习中的作用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
知识蒸馏在小样本学习中的作用关键词:知识蒸馏,小样本学习,深度神经网络,软标签,迁移学习,注意力机制摘要:本文将详细探讨知识蒸馏技术在小样本学习中的重要作用。首先,我们将介绍知识蒸馏的基本原理和在小样本学习中的应用,然后分析深度神经网络的基础知识以及知识蒸馏算法原理。接下来,我们将探讨小样本学习算法与模型,并通过实验和评估来验证知识蒸馏在小样本学习中的效果。最后,我们将讨论知识蒸馏的优化策略和面临
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- uDistil-Whisper:低数据场景下基于无标签数据过滤的知识蒸馏方法
tongxianchao
人工智能机器学习深度学习
uDistil-Whisper:Label-FreeDataFilteringforKnowledgeDistillationinLow-DataRegimes会议:2025年NAACL机构:卡内基梅降大学Abstract近期研究通过伪标签(pseudo-labels)将Whisper的知识蒸馏到小模型中,在模型体积减小50%的同时展现出优异性能,最终得到高效、轻量的专用模型。然而,基于伪标签的蒸
- 【AI大模型实战项目】llm-action:让天下没有难学的大模型
小城哇哇
人工智能AI大模型语言模型agiaillm模型微调
项目大体如下所示:目录LLM训练LLM训练实战LLM参数高效微调技术原理综述LLM参数高效微调技术实战LLM分布式训练并行技术分布式AI框架分布式训练网络通信LLM推理LLM推理框架✈️LLM推理优化技术♻️LLM压缩LLM量化LLM剪枝LLM知识蒸馏♑️低秩分解♍️LLM算法架构LLM应用开发️LLM国产化适配AI编译器AI基础设施LLMOpsLLM生态相关技术服务器基础环境安装及常用工具LLM
- 工程师视角下的 AI 知识蒸馏 - 小模型变强的秘密全解析 (AI Knowledge Distillation from an Engineer‘s Perspective)
新加坡内哥谈技术
人工智能
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/点击收看【工程师视角下的AI知识蒸馏-小模型变强的秘密全解析】https://www.b
- 智能推荐系统性能优化:模型压缩与加速
AIGC应用创新大全
CSDNai
智能推荐系统性能优化:模型压缩与加速关键词:智能推荐系统、模型压缩、模型加速、知识蒸馏、模型量化、参数剪枝、低秩分解摘要:智能推荐系统已成为互联网产品的"流量引擎",但随着推荐模型从FM、DeepFM进化到Transformer、多模态大模型,参数量从百万级飙升至百亿级,计算复杂度呈指数级增长。本文将用"拆快递"式的通俗语言,结合生活案例与代码实战,带你拆解模型压缩与加速的核心技术(知识蒸馏/剪枝
- JAVA也能做大模型蒸馏了?——浅析JBoltAI在大模型的应用
细胞派
java人工智能LLM大模型蒸馏
一、首先,什么是知识蒸馏?——蒸馏的技术本质知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术,其本质是通过构建教师-学生模型的知识迁移框架,将大模型(教师模型)的泛化能力"蒸馏"到小模型(学生模型)中。这一过程突破了传统剪枝、量化的技术局限,在保证模型性能的前提下可实现高达90%的模型体积压缩。关键技术突破体现在三个维度:1.隐层特征对齐:通过KL散度损失函数实现中
- DeepSeek量化训练核心技术:从原理到工业级部署的完整实践方案
燃灯工作室
Deepseek人工智能机器学习数据挖掘
1.主题背景1.1Why:模型压缩刚需传统AI模型在移动端部署面临内存占用大(ResNet-152约230MB)、推理延迟高(VGG16CPU推理>200ms)等问题。DeepSeek量化方案可实现:模型体积压缩4-8倍(FP32→INT8)推理速度提升2-5倍(利用硬件加速指令)保持95%+原始模型精度1.2行业定位在AI技术栈中属于模型优化层,介于算法研发与实际部署之间。与知识蒸馏、剪枝等技术
- PyTorch深度学习框架60天进阶学习计划 - 第47天:模型压缩蒸馏技术(一)
凡人的AI工具箱
深度学习pytorch学习人工智能生成对抗网络python
PyTorch深度学习框架60天进阶学习计划-第47天:模型压缩蒸馏技术(一)第一部分:知识蒸馏的温度调节机制详解欢迎来到我们学习计划的第47天!今天我们将深入探讨模型压缩技术中的两个重要方法:知识蒸馏和模型剪枝。在第一部分,我们将聚焦于知识蒸馏的温度调节机制。1.知识蒸馏概述知识蒸馏(KnowledgeDistillation)是GeoffreyHinton在2015年提出的一种模型压缩方法,核
- 第05篇:对抗蒸馏(Adversarial Knowledge Distillation)——让学生“骗过”判别器的秘密
厚衣服_3
「知识蒸馏全解:从原理到实战」人工智能
目录对抗蒸馏简介背后的动机与挑战方法原理详解模型结构设计PyTorch实现(含判别器与训练循环)训练策略与技巧实验效果与分析进阶变体与未来趋势总结对抗蒸馏简介:将GAN思维引入KD知识蒸馏(KnowledgeDistillation,KD)中,学生模型模仿教师模型的输出,学习其“行为”或“特征”。传统KD偏重于逐点对齐,比如SoftTargetKD通过KL散度对齐softlogits,而Featu
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1