- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- 计算机视觉算法实战——关键点检测
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.引言关键点检测(KeypointDetection)是计算机视觉领域中的一个重要研究方向,旨在从图像或视频中检测出具有特定语义信息的关键点。这些关键点通常代表了物体的特定部位或特征,例如人体的关节、面部特征点、车辆的轮子等。关键点检测在姿态估计、动作识别、目标跟踪、三维重建等任务中
- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- Python OpenCV教程从入门到精通的全面指南【文末送书】
一键难忘
pythonopencv开发语言
文章目录PythonOpenCV从入门到精通1.安装OpenCV2.基本操作2.1读取和显示图像2.2图像基本操作3.图像处理3.1图像转换3.2图像阈值处理3.3图像平滑4.边缘检测和轮廓4.1Canny边缘检测4.2轮廓检测5.高级操作5.1特征检测5.2目标跟踪5.3深度学习与OpenCVPythonOpenCV从入门到精通【文末送书】PythonOpenCV从入门到精通OpenCV(Ope
- 【雕爷学编程】MicroPython手册之 ESP32-CAM 机器人目标跟踪
驴友花雕
机器人目标跟踪人工智能嵌入式硬件pythonMicroPythonESP32-CAM
MicroPython是为了在嵌入式系统中运行Python3编程语言而设计的轻量级版本解释器。与常规Python相比,MicroPython解释器体积小(仅100KB左右),通过编译成二进制Executable文件运行,执行效率较高。它使用了轻量级的垃圾回收机制并移除了大部分Python标准库,以适应资源限制的微控制器。MicroPython主要特点包括:1、语法和功能与标准Python兼容,易学
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 数据标注师学习内容汇总
试着
数据标注师学习数据标注师
目录文本标注图像标注语音标注文本标注词性标注1词性标注2实体标注关系标注事件标注1事件标注2意图标注关键词标注分类标注问答标注对话标注图像标注拉框标注关键点标注2D标注3D标注线标注目标跟踪标注OCR标注图像分类标注语音标注语音切割转写语音校对标注拼音和停顿标注
- 【数据标注师】目标跟踪标注
试着
数据标注师目标跟踪人工智能计算机视觉数据标注师目标跟踪标注
目录一、**目标跟踪标注的四大核心挑战**二、**五阶能力培养体系**▶**阶段1:基础规则内化(1-2周)**▶**阶段2:复杂场景处理技能**▶**阶段3:专业工具mastery**▶**阶段4:领域深度专精▶**阶段5:效率突破方案三、**精度控制五大核心技术**四、**质检与错误防御体系**1.**四维质检法**:2.**高频错误防御表**:五、**持续进阶体系**1.**复杂场景专项**
- 目标跟踪领域经典论文解析
♢.*
目标跟踪人工智能计算机视觉
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!目标跟踪是计算机视觉领域的一个
- 基于均值偏移算法的动态目标跟踪研究
Zoiny_楠
算法均值算法目标跟踪
摘要:目标跟踪技术是计算机视觉领域中重要研究课题之一,在人类生活、军事侦察、工业生产、医疗诊断、交通管理等多方面,都有广泛的应用,研究目标跟踪对人类生活、工程应用等具有现实的指导意义。在基于视觉的目标跟踪算法中,经典的Mean-Shift算法以其理论科学有效、操作简单易实现,跟踪性能较好等优势,一直是众多学者研究的热点。可算法也存在着许多缺陷。例如目标模型中混有背景信息的干扰,给目标定位带来了偏差
- 目标跟踪存在问题以及解决方案
选与握
#目标跟踪目标跟踪人工智能计算机视觉
3D跟踪一、数据特性引发的跟踪挑战1.点云稀疏性与远距离特征缺失问题表现:激光雷达点云密度随距离平方衰减(如100米外车辆点云数不足近距离的1/10),导致远距离目标几何特征(如车轮、车顶轮廓)不完整,跟踪时易因特征匹配失败导致ID丢失。典型案例:在高速公路场景中,200米外的卡车因点云稀疏(仅约50个点),跟踪算法难以区分其与大型货车的形状差异,导致轨迹跳跃或ID切换。技术方案:稀疏点云增强与特
- 多目标跟踪
行走的小部落
目标跟踪人工智能计算机视觉
侦探联盟:多目标跟踪大作战适合对象:高中生关键点:多目标跟踪、传统方法、深度学习、卡尔曼滤波、匈牙利算法、CNN、Re-ID序章:神秘的闹市阴影夜晚的星城,一场盛大的街头音乐节即将开幕。灯光下,形形色色的人在广场上游走。人声、音乐声交织成宏大的交响。突然,警局接到一封匿名信:有人要在音乐节上搞破坏,还不止一个人。“多目标追踪联盟”火速集结:他们擅长在人群中盯梢,每一个侦探都有独特的本领。今天,他们
- 【图像处理入门】10. 计算机视觉基础:从人脸识别到文档矫正
小米玄戒Andrew
图像处理:从入门到专家图像处理计算机视觉人工智能CV算法opencvpython
摘要本文聚焦计算机视觉经典应用场景,带你实现人脸识别、文档扫描矫正和目标跟踪三大项目。通过Haar级联分类器、透视变换、CamShift算法等技术,结合OpenCV实战代码,掌握从特征检测到图像几何变换的完整流程,将图像处理知识升级为计算机视觉工程能力。一、项目1:基于Haar级联的人脸识别系统1.技术原理Haar级联分类器通过级联多个简单的Haar特征强分类器,快速检测图像中的目标(如人脸)。核
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- OpenCV Video 模块使用指南(Python 版)
ice_junjun
OpenCVopencvpython人工智能
一、模块概述video模块是OpenCV的视频分析核心,提供以下核心功能:背景建模:运动检测(MOG2/KNN背景减除)光流法:物体运动估计(LK金字塔光流)目标跟踪:单目标/多目标跟踪(KCF、MOSSE等算法)视频分析:运动轨迹提取、异常行为检测二、核心功能详解与实战1.背景减除(运动检测)1.1算法对比算法名称特点适用场景核心参数示例代码MOG2混合高斯模型,自适应学习率室内外场景(如监控视
- 多假设跟踪关联目标进行数据匹配
ytttr873
算法
多假设跟踪(MultipleHypothesisTracking,MHT)是一种强大的数据关联方法,广泛应用于目标跟踪、数据匹配等领域。它通过同时考虑多个假设来解决目标关联问题,能够有效处理目标数量变化、目标交叉、遮挡以及噪声干扰等情况。1.多假设跟踪(MHT)的基本原理1.1数据关联问题在目标跟踪和数据匹配中,数据关联是一个核心问题。简单来说,我们需要将传感器观测到的数据(如雷达回波、摄像头图像
- 深度学习篇---OC-SORT实际应用效果
Ronin-Lotus
深度学习篇上位机知识篇深度学习pythonOC-SROT
OC-SORT算法在实际应用中的效果可从准确性、鲁棒性、效率三个核心维度评估,其表现与传统多目标跟踪算法(如SORT、DeepSORT)相比有显著提升,尤其在复杂场景中优势突出。以下是具体分析:一、准确性:目标关联更可靠1.遮挡场景下的ID保持能力优势表现:传统算法(如SORT)依赖卡尔曼滤波预测目标位置,当目标长时间遮挡时,预测误差会累积导致轨迹丢失或ID切换。OC-SORT通过以观测为中心的恢
- 多目标跟踪笔记2023
AI算法网奇
数据结构与算法目标跟踪笔记人工智能
目录cvpr2023多目标跟踪算法汇总:MixFormerV2ovtrack模型284MMotionTrackFocusOnDetails:OnlineMulti-objectTrackingwithDiverseFine-grainedRepresentation1、摘要2、方法Observation-CentricSORT:RethinkingSORTforRobustMulti-Object
- 毕设--基于Flask的智能个人财务管理系统
做科研的狗
flaskpython后端毕设毕业设计scikit-learn
本文旨在探讨基于Flask框架的智能个人财务管理系统的设计与实现,该系统旨在帮助用户更好地管理个人财务,提供一系列便捷且实用的功能。系统的主要功能包括用户注册与登录、收支管理、预算制定与管理、财务分析与报告、资产管理、财务目标跟踪、数据导入与导出、以及管理员管理功能等。从技术层面来看,前端将采用Vue框架以提升用户界面的交互体验,后端则选用Python语言结合Flask框架进行开发,数据库方面计划
- 基于中心点预测的视觉评估与可视化流程
视觉AI
目标检测+轨迹预测目标跟踪算法人工智能计算机视觉数据结构算法
基于中心点预测的视觉评估与可视化流程基于中心点预测的视觉评估与可视化流程一、脚本功能概览二、可视化与评分机制详解1.真实框解析2.调用模型处理帧3.预测中心点与真实值的对比4.打分策略5.图像可视化三、目录结构要求四、运行方式五、应用场景与拓展思路六、总结七,完整代码基于中心点预测的视觉评估与可视化流程在图像或视频目标跟踪任务中,我们经常需要评估预测中心点与真实中心点之间的差异,以衡量模型的精度和
- 基于BoxMOT的目标检测与跟踪全流程详解
Hi20240217
学习环境搭建目标检测人工智能计算机视觉
基于BoxMOT的目标检测与跟踪全流程详解一、技术背景与应用场景二、环境搭建2.1Docker容器配置2.2目录结构规划三、关键资源准备3.1数据集选择3.2模型选择3.3视频素材准备四、核心组件安装4.1基础组件安装4.2OpenCV定制编译4.3下载BoxMOT框架,配置环境变量五、目标跟踪实战演示六、性能评估七、参考链接一、技术背景与应用场景目标检测与跟踪是计算机视觉领域的核心技术,广泛应用
- KMeans, KNN, Meanshift
机器灵
基础算法理论KMeansKNNMeanshift
这三个玩意,因为要么带K,要么带Mean,所以吗,放在一起介绍一下:Meanshift因为我本身是图像处理出身,最早接触的是Meanshift,其经常用于图像分割,目标跟踪等方面,下面首先说一下Meanshift:算法步骤:在未被标记的数据点中随机选择一个点作为起始中心点center;找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C。同时在该聚类中记录
- 基于OpenCV的物体跟踪:CSRT算法
知舟不叙
opencv算法人工智能物体跟踪
文章目录引言一、系统概述二、CSRT算法简介三、核心代码解析1.初始化跟踪器和摄像头2.主循环结构3.目标选择与跟踪初始化4.目标跟踪与结果显示5.资源释放四、系统使用说明五、完整代码六、总结引言目标跟踪是计算机视觉领域的重要应用之一,广泛应用于视频监控、人机交互、增强现实等领域。本文将介绍如何使用OpenCV中的CSRT跟踪器实现一个简单的实时目标跟踪系统,通过摄像头捕获视频流并对用户选定的目标
- 粒子滤波器解读
DuHz
人工智能神经网络深度学习机器学习信号处理信息与通信
粒子滤波器解读引言粒子滤波器是一种强大的非线性滤波技术,用于估计动态系统的状态。与卡尔曼滤波器不同,粒子滤波器可以处理任意的非线性性和非高斯性,这使其在机器人定位、目标跟踪、计算机视觉等领域得到广泛应用。基本概念粒子滤波器的核心思想是使用一组加权样本(称为"粒子")来近似目标状态的后验概率分布。每个粒子代表状态空间中的一个可能状态,而其权重则表示该状态的可能性或概率。想象在一个迷雾中的森林里寻找宝
- opencv学习:光流估计及完整代码实现
夜清寒风
学习计算机视觉opencv人工智能
光流估计是什么?是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。基本原理(1)亮度恒定:同一点随着时间的变化,其亮度不会发生改变。(2)小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。(3)空间一致:一个场景上邻近的点投影到图像上也是邻近点,
- 无人机视觉:连接像素与现实世界 —— 像素与GPS坐标双向转换指南
Lunar*
算法与优化无人机
在无人机航拍应用中,一个核心的需求是将图像上的某个点与现实世界中的地理位置精确对应起来。无论是目标跟踪、地图测绘还是农情监测,理解图像像素与其对应的经纬度(GPS坐标)之间的关系至关重要。本文将详细介绍如何实现单个像素坐标到GPS坐标的双向转换,并提供基于Python的实现思路。核心问题像素坐标->GPS坐标:已知图像上一个点的像素坐标(u,v),以及拍摄时无人机的状态(位置、姿态、相机参数),如
- 深入理解与实现GM-PHD滤波算法:C++应用指南
快撑死的鱼
算法杂谈C++(C语言)算法大揭秘算法c++开发语言
前言多目标跟踪(Multi-TargetTracking,MTT)是自动驾驶、雷达系统、机器人视觉等领域中的重要技术。高斯混合概率假设密度(GaussianMixtureProbabilityHypothesisDensity,GM-PHD)滤波器作为一种有效的多目标跟踪算法,因其能够在处理杂波和新生目标时表现出色而广受关注。本文将详细介绍GM-PHD滤波算法,并通过C++代码示例展示其实现。希望
- 计算机视觉笔记 第三章:目标检测
唐风绸繆
计算机视觉人工智能计算机视觉目标检测视觉检测
计算机视觉笔记:第一章图像分类-CSDN博客计算机视觉笔记第二章图像语义分割-CSDN博客计算机视觉笔记第三章:目标检测-CSDN博客计算机视觉第四章:图像识别、目标跟踪-CSDN博客计算机视觉第五章多目视觉(立体视觉)-CSDN博客标定图像中目标的位置,并给出目标的类别目标检测和语义分割的区别:语义分割:包含低层的像素级别的处理方法,也包含高层的语义级别的处理方法目标检测:基本都是高层的语义级别
- YOLO学习笔记 | YOLOv8与卡尔曼滤波实现目标跟踪与预测(附代码)
单北斗SLAMer
YOLO学习从零到1目标检测目标跟踪YOLOpython
YOLOv8与卡尔曼滤波实现目标跟踪与预测一、原理与公式二、分模块代码实现1.**卡尔曼滤波模块**2.**目标检测模块(YOLOv8)**3.**跟踪器模块(SORT算法)**4.**主程序流程**三、关键优化点四、匈牙利算法原理与公式五、Python代码实现1.**基础版匈牙利算法(手动实现)**2.**优化版(基于`scipy`库)**六、在目标跟踪中的应用示例1.**代价矩阵计算(IOU)
- 目标检测YOLO实战应用案例100讲- 无人机平台下露天目标检测与计数
林聪木
目标检测YOLO无人机
目录知识储备基于YOLOv8改进的无人机露天目标检测与计数一、环境配置与依赖安装二、核心代码实现(带详细注释)1.改进YOLOv8模型定义(添加注意力机制)2.无人机视角数据增强(drone_augment.py)3.多目标跟踪与计数(tracking_counter.py)4.完整推理流程(main.py)三、关键技术优化点四、数据集配置示例前言目标检测算法研究现状分析基于检测方法的目标计数研究
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交