- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 【PZ-KU060-KFB】——Kintex UltraScale 纯 FPGA 开发平台,释放高速并行计算潜能,高性价比的 FPGA 解决方案
璞致电子
fpga开发fpga
璞致电子PZ-KU060-KFB开发板基于XilinxKintexUltraScaleKU060芯片打造,以纯FPGA架构为核心,融合高密度逻辑资源、高速接口与工业级可靠性,为需要极致并行处理能力的场景提供从原型验证到量产落地的全流程解决方案。无论是高速信号处理、机器视觉还是工业控制,这款开发板均能凭借强大的逻辑运算能力、丰富的扩展接口与稳定的硬件性能,满足工程师对高带宽、低延迟、定制化协议的严苛
- 编程与数学 03-001 计算机组成原理 21_服务器计算机组成实例解析
编程与数学03-001计算机组成原理21_服务器计算机组成实例解析一、引言二、硬件架构特点(一)多核/多处理器设计(二)大容量高带宽内存(三)存储系统(四)高可用性设计三、性能优化技术(一)并行计算(二)虚拟化支持(三)网络I/O优化四、典型应用场景(一)云计算节点(二)数据库服务器五、总结摘要:本文以DellPowerEdgeR750服务器为例,深入解析了服务器计算机的硬件架构特点、性能优化技术
- DPDK-并行计算
庞叶蒙
DPDK学习并行计算多核处理器超线程亲和性并发指令
0x01缘由继续学习DPDK在并行计算上的优化。对于DPDK的主要应用领域--数据包处理。资源局部优化、避免跨核共享、减少临界区碰撞、加快临界区皖苏完成速率,都不同程度地降低了不可并行部分和并发干扰部分的占比。0x02慨念多核处理器:在一个处理器中集成两个或者多个完整的内核(及计算引擎)。超线程(Hyper-Threading):在一个处理器中提供两个逻辑执行现场,逻辑线程共享流水线、执行单元和缓
- 云服务器性能优化全攻略:CPU、内存、磁盘IO调优实战
Gloria歌洛莉亚
c语言数据库服务器python性能优化
在云计算时代,服务器性能直接影响应用响应速度、用户体验和运营成本。无论是高并发网站、实时数据分析还是机器学习训练,优化云服务器性能都是开发者必须掌握的核心技能。本攻略将从CPU调度、内存管理、磁盘IO三个维度,结合Linux系统特性和实际场景,提供可落地的优化方案。一、CPU性能调优:从调度策略到并行计算1.1CPU资源监控与瓶颈定位实时监控工具:top-c#动态查看进程CPU占用(按P键按CPU
- 基于国产手机 SoC 的多模态模型推理加速实战:GPU × NPU 协同优化全流程解析
观熵
智能终端Ai探索与创新实践人工智能androidNPUGPU
基于国产手机SoC的多模态模型推理加速实战:GPU×NPU协同优化全流程解析关键词多模态模型推理、NPU硬件加速、GPU并行计算、国产手机SoC、端侧部署优化、华为昇腾NPU、小米Surge芯片、高通AIEngine、异构计算加速、TFLiteNNAPI、ONNXRuntimeEP摘要随着国产智能手机SoC(如华为昇腾、vivoV系列、小米Surge、紫光展锐、联发科Dimensity)的异构计算
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- Python 并行新思路:不移除 GIL 的多核并发之道
清水白石008
pythonPython题库python服务器开发语言
Python并行新思路:不移除GIL的多核并发之道引言大家好,我是[您的名字],一位在Python领域深耕多年的软件专家。今天,我们来探讨一个Python开发者经常面临的挑战:全局解释器锁(GIL)以及如何在它的限制下,充分利用多核CPU的并行计算能力。GIL,这个Python语言的“老朋友”,长期以来一直备受争议。它确保了在CPython解释器中,同一时刻只有一个线程执行Python字节码。这简
- 深入探索Hadoop技术:全面学习指南
引言在大数据时代,高效地存储、处理和分析海量数据已成为企业决策与创新的关键驱动力。Hadoop,作为开源的大数据处理框架,以其强大的分布式存储和并行计算能力,以及丰富的生态系统,为企业提供了应对大规模数据挑战的有效解决方案。本文旨在为初学者和进阶者提供一份详尽的Hadoop技术学习指南,涵盖HDFS、MapReduce、YARN等核心组件,以及Hive、Pig、HBase等生态系统工具,助您踏上H
- 老码农和你一起学AI:Python系列-Pandas 并行计算
chilavert318
熬之滴水穿石pandaspython
但凡用到科学计算,Pandas几乎是绕不开的工具——它以简洁的API、灵活的数据操作能力成为数据处理的“瑞士军刀”。但随着数据量增长(比如从10万行到1000万行),你可能会发现:原本流畅的代码突然变慢了,一个简单的apply操作要等好几分钟,读取大文件时进度条仿佛凝固了。这不是你的代码有问题,而是原生Pandas的“单线程”基因在多核时代遇到了瓶颈。并行计算正是解决这个问题的核心方案。简单来说,
- 2025年服务器技术全景解析:量子计算、液冷革命与未来生态构建
国际云1688
腾讯云国际量子计算腾讯云服务器云计算架构运维
2025年服务器技术全景解析:量子计算、液冷革命与未来生态构建一、量子计算:从实验室到产业化的跨越1.中国量子计算产业化突破•本源量子“悟空”超导计算机:搭载72位自主超导量子芯片“悟空芯”,支持198个量子比特并行计算,已为全球139个国家完成超32万个计算任务。在金融领域,其投资组合优化应用使资源消耗较经典计算机降低50%,黑石集团等机构已将其用于高频交易策略优化;在生物医药领域,量子混合神经
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- Python 线程与进程在实际项目中的问题及应对策略
女码农的重启
pythonjava线程进程
一、引言在Python编程里,线程(Thread)和进程(Process)是实现并发与并行计算的关键工具,能有效提升程序执行效率与资源利用率。然而,实际项目应用中,因二者特性及Python运行环境(如GIL,全局解释器锁)等因素,会遭遇诸多问题。本文深入剖析这些问题,并给出应对方案。二、Python线程的问题与解决(一)GIL引发的性能瓶颈Python的全局解释器锁,限制了同一进程内多个线程并行执
- Android 异构计算与 OpenCL/CUDA/OpenVX 的协同方式实战解析
观熵
国产NPU×Android推理优化android人工智能
Android异构计算与OpenCL/CUDA/OpenVX的协同方式实战解析关键词Android异构计算、OpenCL、CUDA、OpenVX、GPU加速、NPU调度、HSA架构、神经网络推理、计算图编排、SoC协同处理、AI芯片编程摘要随着国产SoC平台持续迭代,Android系统中异构计算模式已从传统CPU+GPU并行计算,扩展到集成NPU、DSP、ISP等多核单元的复杂协同体系。在AI推理
- 告别内存焦虑!用Dask打开Python大数据并行计算的“任意门“
小张在编程
python大数据开发语言
引言当你在Jupyter里用Pandas读取20GB的CSV文件,看到内存占用率从10%飙升到90%,最后弹出"MemoryError"时;当你想对亿级数据做分组聚合,却发现单线程计算要等上半小时——这些场景是不是像极了用小推车搬运万吨货物?Python生态中,Dask库就像一台"并行计算推土机",能把大数据拆分成小块并行处理,让你的普通电脑也能拥有分布式计算的能力。本文将从原理到实战,带你掌握这
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- Java多线程实战指南:从基础到高并发的核心技术解析
添砖Java中
javapython开发语言springbootspringcloudspring
一、为什么必须掌握多线程?在单核CPU时代,多线程主要用于提高程序响应速度;在如今的多核处理器时代,多线程已成为榨干硬件性能的必备技能。无论是高并发Web服务器、实时数据处理系统,还是游戏引擎,都离不开多线程技术的支撑。典型案例:电商秒杀系统:1秒内处理10万+请求大数据处理:并行计算TB级数据金融交易系统:毫秒级订单撮合二、线程创建的四大核心方式1.继承Thread类(不推荐)classMyTh
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 量子化学仿真软件:NWChem_(12).并行计算技术
kkchenjj
化工仿真2化工仿真模拟化工仿真
并行计算技术并行计算技术在量子化学仿真软件中扮演着至关重要的角色。随着计算化学任务的复杂度和数据规模的不断增长,传统的单核计算已经无法满足高性能计算的需求。并行计算通过利用多个处理器或计算节点来分担计算任务,可以在显著减少计算时间的同时提高计算效率。在NWChem中,支持多种并行计算模式,包括共享内存并行(OpenMP)、分布式内存并行(MPI)以及混合并行(OpenMP+MPI)。本节将详细介绍
- 2025年跑深度学习电脑配置-深度学习显卡推荐
OpenCV图像识别
人工智能深度学习智能电视人工智能
2025年跑深度学习任务,电脑配置需从处理器、内存、显卡、存储、散热与电源、扩展性、网络连接等多方面综合考量,以下是具体分析:处理器(CPU)多核高性能:深度学习涉及大量并行计算任务,需要处理器具备强大的多核处理能力。英特尔至强Scalable处理器(SapphireRapids或后续架构)和AMDEPYC处理器(Genoa或后续架构)是不错的选择。英特尔至强Scalable处理器提供卓越的单核性
- Spark RDD 及性能调优
Aurora_NeAr
sparkwpfc#
RDDProgrammingRDD核心架构与特性分区(Partitions):数据被切分为多个分区;每个分区在集群节点上独立处理;分区是并行计算的基本单位。计算函数(ComputeFunction):每个分区应用相同的转换函数;惰性执行机制。依赖关系(Dependencies)窄依赖:1个父分区→1个子分区(map、filter)。宽依赖:1个父分区→多个子分区(groupByKey、join)。
- Hadoop-Mapreduce入门
Hadoop-Mapreduce入门MapReduce介绍mapreduce设计MapReduce编程规范入门案例WordCountMapReduce介绍MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。知识。Map负责“分”,把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。Redu
- 【机器学习笔记Ⅰ】7 向量化
巴伦是只猫
机器学习机器学习笔记人工智能
向量化(Vectorization)详解向量化是将数据或操作转换为向量(或矩阵)形式,并利用并行计算高效处理的技术。它是机器学习和数值计算中的核心优化手段,能显著提升代码运行效率(尤其在Python中避免显式循环)。1.为什么需要向量化?(1)传统循环的缺陷低效:Python的for循环逐元素操作,速度慢。代码冗长:需手动处理每个元素。示例:计算两个数组的点积(非向量化)a=[1,2,3]b=[4
- 9、并行计算在现代计算中的应用与优化
seed
探索并行计算与HPC新范式并行计算高性能计算大数据分析
并行计算在现代计算中的应用与优化1.引言并行计算作为一种高效的计算模式,近年来在工业和学术界得到了广泛的应用和发展。随着计算需求的不断增加,传统的串行计算模式已经难以满足现代复杂问题的需求。并行计算通过将计算任务分解为多个子任务,并在多个处理单元上同时执行,从而显著提高了计算效率。本文将探讨并行计算在现代计算中的应用与优化,重点介绍并行计算的基本原理、应用场景和技术细节。2.并行计算的基本原理并行
- Node.js worker_threads:并发 vs 并行
红衣大叔
nodejs帮助文档node.js
一、核心结论Node.js的worker_threads模块实现的是并行计算,而非传统意义上的“并发”。其通过操作系统级线程实现多核CPU的并行执行,同时保留Node.js单线程事件循环的并发模型。二、关键概念解析1.并发(Concurrency)vs并行(Parallelism)并发:指系统同时处理多个任务的能力,但任务可能交替执行(如单核CPU通过时间片轮转)。Node.js主线程的事件循环是
- 深度学习实验:GPU加速,突破性能瓶颈
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
深度学习实验:GPU加速,突破性能瓶颈1.背景介绍随着深度学习模型变得越来越复杂和庞大,传统的CPU已经无法满足训练和推理的计算需求。GPU凭借其强大的并行计算能力和专门为矩阵运算优化的架构,成为了深度学习领域的核心加速器。本文将探讨如何利用GPU加速深度学习实验,突破性能瓶颈,提高模型训练和推理的效率。2.核心概念与联系2.1GPU架构GPU(图形处理器)最初是为了加速图形渲染而设计的,但由于其
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 【Rust日报】Rust稳定2024版本将于 2025年2月20日发布
fastembed-rs-AI嵌入库FastEmbed的Rust实现,提供了快速的文本嵌入、图像嵌入和候选项重新排序功能。它具有以下主要特性:支持同步使用,无需依赖Tokio。使用@pykeio/ort进行高性能的ONNX推理。使用@huggingface/tokenizers进行快速编码。支持使用@rayon-rs/rayon进行批量嵌入生成和并行计算。默认模型是FlagEmbedding,在M
- 33、探索云计算与安全:基础与挑战
探索云计算与安全:基础与挑战1.云计算简介云计算已经成为现代信息技术的重要组成部分,为企业和个人提供了灵活、高效、低成本的计算资源和服务。本文将深入探讨云计算的基本概念、发展历程、服务模型、部署模型以及面临的主要挑战。1.1云计算的历史与发展云计算的发展可以追溯到多个阶段,包括主机计算、集群计算、网格计算、分布式和并行计算、虚拟化、Web2.0、面向服务的计算(SOC)和实用计算。每个阶段都为云计
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi