- 机器学习基础-k 近邻算法(从辨别水果开始)
耐思nice~
机器学习由浅入深-吴恩达机器学习近邻算法人工智能
一、生活中的"分类难题"与k近邻的灵感你有没有这样的经历:在超市看到一种从没见过的水果,表皮黄黄的,拳头大小,形状圆滚滚。正当你犹豫要不要买时,突然想起外婆家的橘子好像就是这个样子——黄色、圆形、大小和拳头差不多。于是你推断:"这应该是橘子吧!"其实,这个看似平常的判断过程,竟然藏着机器学习中最经典的分类算法——k近邻(k-NearestNeighbors,简称kNN)的核心思想!1.1现实中的解
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 机器学习基础:从数据到智能的入门指南
一、何谓机器学习在我们的日常生活中,机器学习的身影无处不在。当你打开购物软件,它总能精准推荐你可能喜欢的商品;当你解锁手机,人脸识别瞬间完成;当你使用语音助手,它能准确理解你的指令。这些背后,都离不开机器学习的支撑。机器学习是一门让计算机能够从数据中学习并改进的学科。随着传感器技术的飞速发展,我们身边充满了各种传感器,如手机中的摄像头、麦克风,交通监控中的传感器等,它们收集了海量的数据。这些数据就
- 大模型算法工程师技术路线全解析:从基础到资深的能力跃迁
Mr.小海
大模型算法数据挖掘人工智能机器学习深度学习机器翻译web3
文章目录大模型算法工程师技术路线全解析:从基础到资深的能力跃迁一、基础阶段(0-2年经验):构建核心知识体系与工程入门数学与机器学习基础编程与深度学习框架NLP与Transformer入门二、进阶阶段(2-4年经验):深化模型技术与工程落地能力大模型预训练与微调技术预训练原理:数据与任务的协同设计微调工具:参数高效适配与工程优化对齐实践:价值观优化与实证效果分布式训练与框架工具并行策略:多维度协同
- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- AI Agent架构解析与工业级项目实战指南:核心框架与模块化实现
心跃程序
人工智能架构
AIAgent架构解析与工业级项目实战指南:核心框架与模块化实现近年来,AIAgent技术凭借其灵活的任务处理架构和多场景扩展能力,逐渐成为人工智能领域的技术焦点。本文基于主流框架源码与工业级项目实践,深度解析Agent系统的设计原理及实现路径,为开发者提供可落地的技术方案参考。技术体系与实战模块本内容涵盖从基础架构到高阶优化的全流程实现,适用于具备Python和机器学习基础的开发者:1.Agen
- Rust 机器学习
KENYCHEN奉孝
Rustrust机器学习开发语言
Rust机器学习Rust机器学习与深度学习现状Rust在机器学习(ML)和深度学习(DL)领域的生态仍处于早期阶段,但因其高性能、内存安全和并发优势,逐渐吸引开发者探索。以下从工具链、库和实际应用方向展开。机器学习(ML)笔记以下是关于机器学习(MachineLearning,ML)的详细学习集,涵盖核心概念、方法、工具和学习路径:机器学习基础概念机器学习是人工智能的子领域,通过算法让计算机从数据
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- Java机器学习全攻略:从基础原理到实战案例详解
cyc&阿灿
java机器学习开发语言
在当今AI驱动的技术浪潮中,机器学习已成为Java开发者必须掌握的核心技能之一。本文将系统性地介绍Java机器学习的原理基础、常用框架,并通过多个实战案例展示如何在实际项目中应用这些技术。无论你是刚接触机器学习的Java开发者,还是希望巩固基础的中级工程师,这篇文章都将为你提供全面而实用的指导。一、机器学习基础与Java生态1.1机器学习基本概念机器学习是人工智能的一个分支,它通过算法使计算机系统
- 机器学习基础相关问题
真的没有脑袋
算法面经汇总机器学习人工智能面试计算机视觉算法
机器学习相关的基础问题K-means是否一定会收敛K-means是否一定会收敛K-means算法在有限步数内一定会收敛,但收敛到的可能是局部最优解而非全局最优解。以下是详细分析:K-means的优化目标是最小化样本到其所归属簇中心的距离平方和(SSE,SumofSquaredErrors)。因此,每一次迭代都单调减小(或保持不变)损失函数,而SSE有下界(不能为负数),所以一定会收敛。在实际实现中
- 【机器学习基础】机器学习入门核心:Jaccard相似度 (Jaccard Index) 和 Pearson相似度 (Pearson Correlation)
白熊188
机器学习基础机器学习人工智能
机器学习入门核心:Jaccard相似度(JaccardIndex)和Pearson相似度(PearsonCorrelation)一、算法逻辑Jaccard相似度(JaccardIndex)**Pearson相似度(PearsonCorrelation)**二、算法原理与数学推导1.Jaccard相似度公式2.Pearson相似度公式三、模型评估中的角色相似度度量的评估重点在推荐系统中的评估四、应用
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- 亚远景-AI 快速入门与ML-SPICE标准引入课程
亚远景aspice
人工智能
本课程为AI快速入门与ML-SPICE标准引入,用1天时间深度解锁汽车行业「ML-SPICE标准框架+工具链+合规要求」三位一体落地路径,助您跨越从理论认知到产线部署的鸿沟。课程内容:模块1:AI战略与基础1.AI驱动的商业价值机器学习在汽车/制造行业的核心应用场景企业AI转型的3大关键成功要素2.ML机器学习基础核心概念:监督学习/无监督学习/强化学习模型架构概览:CNN、Transformer
- 【机器学习基础】机器学习入门核心算法:K-近邻算法(K-Nearest Neighbors, KNN)
白熊188
机器学习基础python算法机器学习近邻算法
机器学习入门核心算法:K-近邻算法(K-NearestNeighbors,KNN)一、算法逻辑1.1基本概念1.2关键要素距离度量K值选择二、算法原理与数学推导2.1分类任务2.2回归任务2.3时间复杂度分析三、模型评估3.1评估指标3.2交叉验证调参四、应用案例4.1手写数字识别4.2推荐系统五、经典面试题问题1:KNN的主要优缺点?问题2:如何处理高维数据?问题3:KNN与K-Means的区别
- NLP学习路线(自用)
�猫薄荷武士�
自然语言处理学习人工智能
NLP学习路线规划(从基础到科研)你的目标是申请NUSNLP方向的PhD,所以NLP学习路线不仅要涵盖基础知识,还要逐步深入到前沿技术、论文阅读、实验复现和科研能力提升。这里我给你一个完整的学习路径,帮助你高效构建NLP知识体系,并逐步积累科研能力。学习路线总览阶段1(基础)-计算机科学&机器学习基础阶段2(核心)-传统NLP技术&深度学习NLP阶段3(进阶)-Transformer&预训练模型(
- NLP学习路线图(八):常见算法-线性回归、逻辑回归、决策树
摸鱼许可证
NLP学习路线图自然语言处理nlp
引言:当机器学习遇见自然语言自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能皇冠上的明珠,正在深刻改变人机交互的方式。从智能客服到机器翻译,从情感分析到文本生成,NLP技术的突破都建立在坚实的机器学习基础之上。本文将深入剖析机器学习核心算法,揭示这些"传统"方法在NLP领域的独特价值,为开发者构建完整的AI知识体系提供关键路径。第一部分机器学习基础与核心算法1
- 机器学习--特征工程具体案例
lucky_lyovo
机器学习人工智能
一、数据集介绍sklearn库中的玩具数据集,葡萄酒数据集。在前两次发布的内容《机器学习基础中》有介绍。1.1葡萄酒列标签名:wine.feature_names结果:['alcohol','malic_acid','ash','alcalinity_of_ash','magnesium','total_phenols','flavanoids','nonflavanoid_phenols','p
- 26备战秋招day17——机器学习基础
如意鼠
26秋招机器学习人工智能
机器学习入门指南:常见算法详解与代码实现机器学习(MachineLearning,ML)是人工智能(AI)的一个重要分支,旨在通过数据驱动的方法让计算机系统自动学习和改进。对于刚接触机器学习的朋友来说,了解各种算法的基本原理及其实现方法至关重要。本篇文章将通俗易懂地介绍几种常见的机器学习算法,解释其背后的数学原理,并提供简单的代码示例,帮助你更好地理解这些算法的工作机制。目录什么是机器学习?监督学
- 机器学习基础概念详解:从入门到应用
烂蜻蜓
机器学习人工智能python深度学习
在机器学习领域,掌握基础概念是理解复杂模型和应用场景的关键。本文将以简洁的方式介绍机器学习的核心概念,帮助读者快速构建知识框架。一、数据集的划分:训练集、验证集与测试集1.训练集(TrainingSet)用途:用于模型训练,通过调整模型参数学习数据规律特点:通常占数据总量的60-70%示例:用历史房价数据训练模型预测未来价格2.验证集(ValidationSet)核心作用:模型调优与超参数选择应用
- 【机器学习基础】鸢尾花的分类 - 机器学习领域的Hello World
维他命C++
机器学习基础机器学习分类人工智能
1项目简介【背景】假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣。她收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和宽度,所有测量结果的单位都是厘米。她还有一些鸢尾花的测量数据,这些花之前已经被植物学专家鉴定为属于setosa、versicolor或virginica三个品种之一。对于这些测量数据,她可以确定每朵鸢尾花所属的品种。【目标】构建一个机器学习模型,可以从上述已知品
- 机器学习基础算法11-鸢尾花数据集分析-PCA主成分分析与logistic回归(管道分析)
qq_42749341
机器学习-基础知识
目录数据集介绍PCA主成分分析1.基本原理2.代码实现逻辑回归-管道-Pipeline代码模型泛化能力分析数据集介绍鸢尾花数据集有三个类别,每个类别有50个样本。其中一个类别与另外两个线性可分,另外两个不能线性可分。PCA主成分分析1.基本原理在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为
- 机器学习实操 第一部分 机器学习基础 第6章 决策树
odoo中国
人工智能机器学习决策树人工智能
机器学习实操第一部分机器学习基础第6章决策树内容概要第6章深入介绍了决策树,这是一种功能强大的机器学习算法,能够处理分类、回归以及多输出任务。决策树通过递归地分割数据集来构建模型,具有易于解释和可视化的特点。本章详细讲解了决策树的训练算法、正则化方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用决策树解决实际问题。主要内容决策树的训练与可视化构建决策树:使用CART算法训练
- 机器学习实操 第一部分 机器学习基础 第5章 支持向量机(SVM)
odoo中国
人工智能机器学习支持向量机人工智能
机器学习实操第一部分机器学习基础第5章支持向量机(SVM)内容概要第5章深入介绍了支持向量机(SVM),这是一种功能强大且应用广泛的机器学习模型。SVM适用于线性或非线性分类、回归以及noveltydetection。本章详细讲解了SVM的核心概念、训练方法以及在不同任务中的应用。通过理论和实践相结合的方式,读者将掌握如何使用SVM解决实际问题。主要内容线性SVM分类硬间隔分类:在数据线性可分的情
- 深度学习-学习笔记 DAY-1 (机器学习基础-案例学习)
gzj123。。
深度学习
本系列的学习笔记基础为李宏毅老师的《深度学习教程》,希望可以和大家一起共攀深度学习的大山,本教程干货满满,希望和我一起探索深度学习的宝子们收藏起来吧!!!案例:以视频的点击次数预测为例介绍下机器学习的运作过程。假设有人想要通过视频平台赚钱,他会在意频道有没有流量,这样他才会知道他的获利。假设后台可以看到很多相关的信息,比如:每天点赞的人数、订阅人数、观看次数。根据一个频道过往所有的信息可以预测明天
- 机器学习基础理论 - 偏差 vs 方差,欠拟合 vs 过拟合
yousuotu
面试题机器学习人工智能
定义记在训练集D上学得的模型为f(x;D)模型的期望预测为$$\hat{f}(x)=E_D[f(x;D)]$$偏差(Bias)$$bias^2(x)=(\hat{f}(x)-y)^2$$偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力;方差(Variance)$$var(x)=E_D[(f(x;D)-\hat{f}(x))^2]$$方差度量了同样大小的训练集的变动所
- 机器学习基础理论 - 分类问题评估指标
yousuotu
面试题机器学习算法人工智能
几个定义:混淆矩阵TP:TruePositives,表示实际为正例且被分类器判定为正例的样本数FP:FalsePositives,表示实际为负例且被分类器判定为正例的样本数FN:FalseNegatives,表示实际为正例但被分类器判定为负例的样本数TN:TrueNegatives,表示实际为负例且被分类器判定为负例的样本数一个小技巧,第一个字母表示划分正确与否,T表示判定正确(判定正确),F表示
- 机器学习基础 - 回归模型之线性回归
yousuotu
面试题机器学习回归线性回归
机器学习:线性回归文章目录机器学习:线性回归1.线性回归1.简介2.线性回归如何训练?1.损失函数2.正规方程3.梯度下降法4.两种方法的比较2.岭回归岭回归与线性回归3.Lasso回归4.ElasticNet回归LWR-局部加权回归QA1.最小二乘法估计2.最小二乘法的几何解释3.从概率角度看最小二乘法4.推一下线性回归的反向传播5.什么时候使用岭回归?6.什么时候使用L1正则化?7.什么时候使
- 【人工智能机器学习基础篇】——深入详解监督学习之模型评估:掌握评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术
猿享天开
人工智能数学基础专讲人工智能机器学习深度学习
深入详解监督学习之模型评估在监督学习中,模型评估是衡量模型性能的关键步骤。有效的模型评估不仅能帮助我们理解模型在训练数据上的表现,更重要的是评估其在未见数据上的泛化能力。本文将深入探讨监督学习中的模型评估方法,重点介绍评估指标(准确率、精确率、召回率、F1分数等)和交叉验证技术,并通过示例代码帮助读者更好地理解和应用这些概念。目录模型评估的重要性评估指标详解准确率(Accuracy)精确率(Pre
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri